Buchi neri cosa sono

 

 

 

Buchi neri cosa sono

 

Questo sito utilizza cookie, anche di terze parti. Se vuoi saperne di più leggi la nostra Cookie Policy. Scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all’uso dei cookie.I testi seguenti sono di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente a studenti , docenti e agli utenti del web i loro testi per sole finalità illustrative didattiche e scientifiche.

 

 

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

 

 

 

Buchi neri cosa sono

 

I buchi neri

 

Introduzione: lo spaziotempo

Il concetto di "buco nero" non è, in fisica, particolarmente misterioso. Di certo, ci sono ancora moltissime cose che non comprendiamo su questi strani oggetti, ma ce ne sono anche moltissime che comprendiamo, alcune delle quali possono anzi essere spiegate anche in modo piuttosto semplice. L'unico concetto chiave che ci occorre è quello di "spaziotempo". Si tratta cioè di capire che lo spazio ed il tempo così come siamo abituati a percepirli - é cioè separati ed indipendenti, visto che nello spazio ci si può muovere a piacimento in ogni direzione, mentre il tempo ha una natura più sfuggente é sembra in un certo senso trascinarci con sé anche a nostro malgrado - sono solo due facce della stessa medaglia al punto che, nelle condizioni estreme che si incontrano in prossimità dei buchi neri, possono addirittura scambiare il loro ruolo reciproco. Cominciamo da lontano.
Galileo Galilei, nella prima metà del '600, pose le basi della scienza fisica mostrando che il concetto di "spazio" è relativo all'osservatore. Ad esempio, una persona che passeggi avanti é indietro sul ponte di una nave finirà per tornare sempre a quello che - secondo lui - è il punto di partenza. Per chi osserva dalla terraferma, invece, la stessa persona non farà che allontanarsi progressivamente assieme alla nave. Il concetto di "tempo". invece, era per Galileo - é per i suoi successori fino ad Einstein - un concetto assoluto. Se l'osservatore a terra é quello in moto avessero sincronizzato i loro pendoli alla partenza della nave e, dopo un po', qualcuno avesse sparato con un archibugio, entrambi gli osservatori avrebbero contato, all'istante dello sparo, un ugual numero di oscillazioni. Tutto ciò a noi sembra intuitivo, é non abbiamo difficoltà a comprenderlo. Purtroppo, la Natura ha scelto di operare in modo più complicato, é non possiamo fare altro che prenderne atto. Come fece appunto Einstein nel 1905 allorché, pubblicando il suo "Saggio sull'Elettrodinamica dei Corpi in Moto" (che è nient'altro che la Teoria della Relatività Speciale), fu costretto a concludere che anche il tempo è relativo. Come a dire che, se i due osservatori di Galileo avessero eseguito le due misure di tempo in modo estremamente accurato, si sarebbero accorti che i due pendoli non erano più rigorosamente sincronizzati come alla partenza. é non a causa del rollio é beccheggio della nave, ma semplicemente a causa della differenza di velocità tra i due osservatori.
Il fatto sperimentale che condusse Einstein ad una conclusione che, al contrario di quella di Galileo, non ci sembra affatto ovvia, fu l'assoluta costanza della velocità della luce. Cerchiamo di essere più chiari.
Senza bisogno di tanti ragionamenti sappiamo che, se viaggiamo in auto a cento chilometri all'ora, é sulla corsia opposta giunge un'altra auto che viaggia alla stessa velocità, nel momento in cui le due auto si passano accanto la loro velocità relativa è pari alla somma delle due velocità, é cioè duecento chilometri all'ora. Analogamente, sembrerebbe che se due fotoni (o raggi di luce, se preferite, viaggianti ciascuno alla velocità della luce (d'ora in poi semplicemente c) si incontrassero provenendo da due direzioni opposte, la loro velocità relativa dovrebbe essere 2c. é invece non è vero; la loro velocità relativa resta sempre c. Questo apparente controsenso viene spiegato da Einstein nel seguente modo: sappiamo che la velocità è definita come la quantità di spazio percorsa in un certo tempo. Ebbene, se per due osservatori che si muovono l'uno rispetto all'altro gli orologi non procedono con lo stesso ritmo, ecco che è possibile - lavorando di fino con la matematica - che la velocità relativa di due osservatori in moto non sia più semplicemente la somma delle due velocità, ma un qualcosa di un po' più complicato, che tra l'altro non può mai superare il valore c. La chiave di tutto è dunque proprio nel fatto che, così come già lo spazio per Galileo, anche il tempo - da Einstein in poi - é misurato in modo diverso da osservatori che si muovono in modo diverso l'uno dall'altro.
Da qui il concetto di "spaziotempo", inteso come una unità in cui ciascuna delle due componenti influenza l'altra. Da qui anche il ruolo chiave giocato dalla velocità della luce la quale, forzando spazio é tempo ad interagire tra loro, ed a modificarsi a vicenda pur di rimanere costante essa stessa, assume un ruolo chiave di valore universale.
Una volta accettata l'idea che sia lo spazio che il tempo siano "relativi", nel senso che la loro misurazione fornisce risultati diversi ad osservatori diversi, si può percorrere un passo ulteriore: non sarà per caso possibile misurare sia lo spazio che il tempo con le stesse unità di misura? Per esempio, in metri'? La risposta è affermativa.
Il trucco è il seguente: sappiamo che le distanze si misurano in metri, mentre i tempi si misurano in secondi. Le velocità, d'altronde, si misurano in metri/secondo (o in chilometri/ora, ma in ogni caso come un rapporto tra distanze é tempi). Se dunque moltiplichiamo un tempo per una velocità, otteniamo una distanza.
E' un po' il procedimento inverso a quello che eseguiamo quando cerchiamo di capire quanto tempo impiegheremo, su autostrada, ad arrivare da un casello all'altro, supponendo di poter mantenere una certa velocità media. Se dallo svincolo di Roma Nord a Bolzano ci sono 650 chilometri, é se riusciamo a mantenere una media di 100 Km/'ora, saremo a Bolzano sei ore é mezza dopo che siamo entrati in autostrada. Ribaltando il concetto, se un amico ci dice che ha impiegato sei ore é mezza per arrivare a Bolzano, sempre viaggiando a 100 Km/ora, non abbiamo difficoltà a trasformare il tempo di percorrenza in una distanza: il nostro amico ha percorso 650 chilometri.
Solo che, applicando questo concetto alle leggi della natura, non possiamo sottostare ai capricci del ministro dei trasporti, il quale può imporre limiti diversi di velocità, o a quelli delle organizzazioni sindacali degli autotrasportatori, che possono imporre una manifestazione di categoria con incolonnamenti lungo il tratto appenninico, é via discorrendo. Se vogliamo trasformare tempi in distanze con validità assoluta, dobbiamo disporre di una velocità assoluta anch'essa, che non possa essere modificata per decreto legge, per richiesta di sgravi fiscali é via discorrendo.
Per fortuna, questa velocità esiste, come abbiamo appena visto. E' proprio la velocità della luce c.. Dunque, moltiplicando un intervallo di tempo per c, trasformiamo quel tempo in distanza in modo assoluto. Questa equivalenza tra tempo é distanza mediata attraverso la velocità della luce è il concetto che si trova alla base della Teoria della Relatività Speciale, ed interviene anche in quella Generale che, come vedremo tra poco, è nient'altro che una teoria della gravitazione ben più perfetta di quella di Newton. Ma adesso basta con le premesse, é cominciamo a parlare di buchi neri, anche se prenderemo il discorso un po' alla larga.

 

I buchi neri secondo Newton é Laplace.

Il buco nero è un fenomeno legato alla gravitazione. Conviene dunque cominciare dalla Legge di Gravitazione Universale di Newton, la quale afferma che, se si hanno due oggetti aventi ciascuno una cena massa, essi si attraggono tra loro con una forza che è tanto maggiore quanto maggiore è il prodotto delle due masse, é tanto minore quanto è la distanza che li separa, elevata al quadrato. Così, se raddoppiamo la massa di uno dei due oggetti, la forza tra di loro raddoppia. Se invece li allontaniamo tra di loro fino a distanza doppia, la forza diminuisce di quattro volte.
In base a questa legge, è possibile spiegare tutti i moti astronomici osservati fino all'inizio del XX secolo, tutte le misurazioni eseguite su oggetti pesanti alla superficie terrestre, tutto quello che abbia attinenza con la forza di gravità. é fisici, astronomi é i matematici si sono sbizzarriti, nei secoli, ad applicarla ai casi più disparati. Una delle applicazioni più "esoteriche" della teoria newtoniana della gravitazione fu quella, eseguita indipendentemente da Michell é da Laplace verso la fine del '700, ad ipotetici oggetti di massa enorme.
Conoscendo la massa di una configurazione di materia che, per semplicità, supporremo di forma sferica, è infatti possibile calcolare quale deve essere la velocità minima -detta velocità di fuga- con cui un qualsiasi altro oggetto debba essere scagliato dalla superficie della sfera, se si vuole che esso non ricada giù, ma continui ad allontanarsi all'infinito. Nel caso della terra, ad esempio, tale velocità è di 11,2 Km/sec.
Ebbene, Laplace calcolò che, se esistesse un oggetto celeste avente la densità dell'acqua, ed il cui raggio fosse paragonabile a quello dell'intero sistema solare, la velocità di fuga dalla superficie ditale oggetto sarebbe stata pari a quella della luce. Dunque, non potendo neppure la luce sfuggirne, tale oggetto sarebbe stato assolutamente oscuro. L'equivalente newtoniano del buco nero, in un certo senso. Ad ogni modo, visto che all'epoca il concetto aveva al più un interesse filosofico, l'idea non ebbe seguito. Rispuntò fuori solo nel 1916, ed in un contesto ben diverso. Bisogna a questo punto aggiungere che, come la maggior pane delle teorie fisiche, anche quella della Gravitazione Universale conteneva già fin dall'inizio i germi della sua stessa distruzione. E, cosa ancora più notevole, lo stesso Newton ne era ben conscio, al contrario di molti fisici di epoche successive. Il problema verteva sulla "azione a distanza".
"Come è mai possibile" si domandava infatti Newton "che due corpi celesti distanti tra loro si scambino quella qualità che viene definita forza é che, nella normale sperimentazione terrestre, vediamo scambiare solo tra oggetti a contatto? Se io spingo con la mia mano un oggetto, questo è sottoposto ad una forza, ma qual è la mano invisibile che spinge il sole é la terra l'uno verso l'altra?"
Domanda molto intelligente. Alla quale per quasi due secoli gli scienziati riuscirono a fornire solo risposte sciocche. L'unico indizio di una spiegazione intelligente, che anticipava in modo ancora confuso quella di Einstein, fu fornito sempre dallo stesso Newton il quale, verso la fine della sua vita, cominciò a pensare che, forse, il vuoto possedesse, nei confronti della massa, un qualcosa di analogo a quello che è l'indice di rifrazione' che il vetro possiede nei confronti della luce. Come la luce cambia percorso passando dall'aria al vetro o all'acqua, anche le masse mutano continuamente la loro traiettoria nel vuoto. In un modo o nell'altro, si eliminava il concetto di forza a distanza, per sostituirlo con una proprietà locale del vuoto in cui si muovono i corpi celesti.



Se la massa del nucleo della stella, al termine della sequenza dei bruciamenti nucleari, e' superiore a circa 3 volte la massa del Sole, il collasso che esso subisce non puo' essere fermato nemmeno dalla pressione delle particelle che lo compongono: esso prosegue inarrestabile, dando origine ad un buco nero, una specie di mostro che inghiotte tutta la materia che si trova entro una certa distanza é dal quale niente puo' scappare. La forza di gravita', in questo caso, e' cosi' grande da comprimere le particelle fino ad una densita' praticamente "infinita": la materia viene ridotta in uno stato fisico sconosciuto, ma sicuramente diverso da quello della materia che conosciamo.
L'esistenza dei buchi neri e' prevista dalla Relativita' Generale di Einstein. Nel collasso, la stella si "ripiega" su se stessa ed incurva lo spaziotempo circostante a causa della sua enorme gravita'. La gravita' superficiale di un buco nero e' cosi' alta che nemmeno la luce puo' sfuggirle, nemmeno la luce, percio' esso e' completamente oscuro é non si puo' rivelarne uno in modo diretto.
Come per ogni stella o pianeta, anche per un buco nero si puo' definire la velocita' di fuga ad una certa distanza D, cioe' la minima velocita' che un corpo dovrebbe avere per poter sfuggire all'attrazione gravitazionale che il buco nero esercita alla distanza D. Ragionando all'inverso, per una data velocita' si puo' trovare la distanza minima alla quale l'oggetto puo' avvicinarsi al buco nero senza venirne catturato: se si pone questa velocita' pari a quella della luce (la massima velocita' esistente), si trova la distanza oltre la quale nemmeno la luce puo' sfuggire al buco nero. Questo limite prende il nome suggestivo di "orizzonte degli eventi" é delimita la regione interna, dalla quale nessun segnale puo' raggiungere l'esterno: di tutto cio' che avviene all'interno non possiamo avere notizie.
Non e' possibile definire per un buco nero una vera é propria superficie, ne' un volume o una densita': le proprieta' che caratterizzano questo oggetto sono la sua massa ed il cosiddetto raggio di Schwarzschild (dal nome del fisico che studio' per primo i buchi neri dal punto di vista teorico), cioe' la distanza dal centro all'orizzonte degli eventi. Tra queste due quantita' intercorre la relazione


RS = 2GM/c2



dove RS e' il raggio di Schwarzschild, G la costante di gravitazione universale, M la massa del buco nero é c la velocita' della luce. Tanto maggiore e' la massa di un buco nero, tanto maggior e' il suo "raggio d'azione". Sostituendo i valori delle costanti, RS<7SUB> e' pari a 3 (M/MS) Km, dove MS e' la massa del Sole.
Fino a non molti anni fa non c'erano prove dell'esistenza effettiva dei buchi neri. Infatti, essi possono essere rivelati soltanto dagli effetti gravitazionali che esercitano sulla materia circostante. Per esempio, se una delle componenti di un sistema binario e' un buco nero é l'altra una stella normale, la presenza del primo sara' rivelata dal moto orbitale della seconda attorno al centro di massa comune. Spesso, quando anch'essa evolve in gigante rossa é si espande, parte del gas dei suoi strati piu' esterni puo' formare un disco di accrescimento attono al buco nero. Dal disco, il gas cade lentamente sul buco nero; l'attrito cresce verso il bordo interno del disco, il gas si riscalda é produce un ampio spettro di radiazione, soprattutto nelle bande X é ultravioletta. Questa radiazione permette anch'essa di rivelare la presenza di un oggetto compatto con un disco di accrescimento.
Con il lancio dei primi satelliti dotati di rivelatori in raggi X, vennero scoperte dentro é fuori della nostra Galassia molte sorgenti X prima sconosciute (la nostra atmosfera, infatti, blocca la maggior parte dei raggi X provenienti dallo spazio). Esse emettono nella banda X piu' di quanto non emettano nell'ottico é il loro spettro e' di tipo non termico, cioe' non e' del tipo emesso da una stella. Alcune di queste sorgenti X sono di natura "stellare", come Cygnus X-1, Scorpio X-1 o Hercules X-1; sembra che Cygnus X-1 sia un sistema binario del tipo prima descritto, con un buco nero con massa di circa 6 volte la massa del Sole ed una stella di 20 volte la massa del Sole. Altre sorgenti X sono pulsar, altre ancora coincidono con galassie o quasar.

Come abbiamo detto, il campo gravitazionale del buco nero e' cosi' forte da incurvare lo spaziotempo circostante; una delle conseguenze principali e' che un raggio di luce che passa nelle vicinanze del buco nero, come di una grande concentrazione di massa, si incurva é cambia direzione; e' cio' che sta alla base del fenomeno delle lenti gravitazionali. Se il raggio di luce passa alla distanza RS, viene incurvato cosi' tanto da cominciare a girare in tondo attorno al buco nero ! La presenza di un buco nero molto massiccio, interposto tra noi ed una sorgente di luce come una galassia distante, potrebbe quindi essere rivelata anche dall'effetto di lente gravitazionale sulla radiazione proveniente dalla sorgente.

Sembra che buchi neri supermassicci esistano o siano esistiti nei nuclei delle galassie attive é che l'accrescimento di materia su questi oggetti ne rappresenti il motore energetico centrale.


Nel nucleo della galassia NGC 4261 c'e' un disco di polvere del diametro di 800 anni luce, é probabilmente un buco nero di massa pari a 1,2 miliardi di volte quella del Sole !
In questa immagine e' rappresentato lo scenario che si potrebbe osservare da un ipotetico pianeta posto nel disco di polvere, guardando verso il buco nero.
La luce bianca proveniente dal gas caldissimo che cade sul buco nero e' arrossata a causa della polvere, che assorbe luce ad alte frequenze é la riemette a frequenze piu' basse.
Illustrazione di J. Gitlin (Space Telescope Science Institute)

Immagine del disco di polvere che circonda il buco nero al centro della galassia spirale NGC 4261. Misurando la velocita' del gas che ruota attorno al buco nero, gli astronomi hanno potuto misurare il campo gravitazionale di quest'ultimo é la sua massa, che e' pari a circa 1,2 miliardi di volte quella del Sole.
(HST)





Fonte estratto da : http://www.evan60.net/uploads/6/3/2/5/6325749/compendio_di_astrofisica.doc

Sito web da visitare: http://www.evan60.net/scienza-e-dintorni.html

 

Autore del testo: non indicato nel documento di origine

Parola chiave google : Buchi neri cosa sono tipo file : doc

 

 

 

Visita la nostra pagina principale

 

Buchi neri cosa sono

 

Termini d' uso e privacy

 

 

 

Buchi neri cosa sono