Modelli atomici quanto-meccanici
Modelli atomici quanto-meccanici
Questo sito utilizza cookie, anche di terze parti. Se vuoi saperne di più leggi la nostra Cookie Policy. Scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all’uso dei cookie.I testi seguenti sono di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente a studenti , docenti e agli utenti del web i loro testi per sole finalità illustrative didattiche e scientifiche.
Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).
Modelli atomici quanto-meccanici
Nonostante i notevoli successi nello spiegare lo spettro a righe, perfino a livello della sua struttura fine, anche il modello di Bohr-Sommerfeld, dimostrò la sua limitatezza. Soprattutto l'impostazione per così dire semiclassica che lo caratterizzava lasciava insoddisfatti molti fisici. In altri termini tale modello ricorreva ampiamente alle leggi classiche della meccanica e dell'elettromagnetismo, salvo poi essere costretto a fare vistose eccezioni, vietandone arbitrariamente l'applicazione in alcuni passaggi chiave. (orbite stazionarie dove l’elettrone non irraggia). La stessa condizione di quantizzazione risultava introdotta del tutto arbitrariamente.
Inoltre il modello otteneva risultati buoni ed aderenti ai dati sperimentali solamente per lo spettro dell'idrogeno, mentre non riusciva a fare previsioni soddisfacenti per gli atomi plurielettronici.
Il modello subì una radicale ed a tutt'oggi definitiva revisione con la nascita di una nuova meccanica, la meccanica quantistica e la conseguente introduzione di modelli atomici quantomeccanici.
La data di nascita della meccanica quantistica si può fissare al 1900 con la scoperta da parte di Planck del quanto di energia radiante h. Ma per circa vent'anni i fisici non ebbero vera consapevolezza della portata di tale scoperta. Le cose cominciarono realmente a mutare quando nel 1924 il fisico francese Louis De Broglie , avanzò la sconvolgente ipotesi che non solo l'energia, ma anche la materia possedesse una natura duale, corpuscolare e ondulatoria.
La natura ondulatoria della materia: De Broglie
Secondo tale ipotesi ad ogni corpo è possibile associare un'onda, che De Broglie chiamava 'onda di materia '. Per verificare questo assunto era necessario calcolare la lunghezza d'onda associata, ad esempio ad un elettrone, e poi controllare sperimentalmente se l'elettrone poteva produrre fenomeni tipicamente ondulatori come l'interferenza o la diffrazione, di entità compatibile con la lunghezza d'onda calcolata.
Il calcolo della lunghezza d'onda associata ad un corpo di massa m, fu eseguito da De Broglie.
Egli propose di assimilare completamente la trattazione delle particelle materiali a quella dei fotoni. Abbiamo già visto come nell'effetto Compton i fotoni possano essere considerati particelle con quantità di moto pari a
La relazione che nella relatività speciale lega l'energia totale (E), l'energia a riposo (Eo) e la quantità di moto p = mv è infatti E2 = (pc)2 + Eo2. Poiché non possono esistere fotoni fermi, l'energia a riposo di un fotone vale zero e la relazione per un fotone diventa E = pc.
Ricordando poi che E = h , si ottiene per un fotone .
De Broglie ipotizzò dunque che anche la quantità di moto delle particelle materiali potesse essere calcolata come rapporto tra la costante di Planck e la loro lunghezza d'onda. Veniva in tal modo automaticamente associata ad ogni particella materiale una lunghezza d'onda, detta lunghezza d'onda di De Broglie, il cui valore è dato dalla relazione
Sostituendo ad m la massa dell'elettrone e a v la velocità caratteristica dei raggi catodici, si può facilmente verificare che un elettrone possiede una lunghezza d'onda dello stesso ordine di grandezza dei raggi X (10-8 cm).
Utilizzando come reticolo di diffrazione reticoli cristallini come era stato fatto per dimostrare la natura ondulatoria dei raggi X, sarebbe stato dunque possibile verificare l'ipotesi di De Broglie con gli elettroni.
L'esperimento fu tentato nel 1927 da , George Thomson (figlio di J.J. Thomson) e, contemporaneamente da C.J. Davisson e L.H. Germer negli U.S.A. Essi dimostrarono che un fascio di elettroni accelerati e fatti passare attraverso un reticolo cristallino produce su di uno schermo caratteristiche figure di diffrazione e interferenza.
Dall'analisi del diametro degli anelli di diffrazione si poté anche calcolare che la lunghezza d'onda della radiazione elettronica coincideva perfettamente con quella prevista da De Broglie.
Si osservò anche che la lunghezza d'onda diminuiva o aumentava quando il fascio di elettroni veniva accelerato o rallentato, secondo quanto previsto dalla relazione di De Broglie.
Pochi anni dopo il fisico Otto Stern ottenne gli stessi risultati usando atomi di sodio al posto di elettroni, dimostrando quindi che tutte le particelle possono essere associate ad onde di De Broglie.
Il motivo per il quale non riusciamo ad osservare il comportamento ondulatorio degli oggetti macroscopici che ci circondano è dovuto al fatto che il rapporto h/mv risulta per tali oggetti piccolissimo, essendo h molto piccolo ed m molto grande.
Ai corpi macroscopici è dunque associata una lunghezza d'onda di De Broglie di dimensioni infinitesime.
Dopo aver sperimentalmente verificato la consistenza dell’ipotesi di De Broglie sulla natura ondulatoria della materia, i fisici si interrogarono sulla natura fisica di un’onda associata alla materia.
In ogni fenomeno ondulatorio c'è sempre qualcosa che si muove o vibra. I fisici si chiesero che cosa vibrasse nei corpi materiali. Lo stesso De Broglie tentò di dare una risposta ipotizzando che si trattasse di vere e proprie onde di materia. In altre parola che la stabilità della materia fosse solo un'illusione del mondo macroscopico, ma che a livello microscopico fosse necessario immaginare elettroni, protoni e atomi come delle nuvolette di materia pulsante senza contorni ben definiti.
Tale interpretazione non ebbe successo, anche perché si scontrava con difficoltà teoriche insormontabili. La risposta, ancor oggi accettata dalla maggior parte dei fisici, venne pochi anni più tardi, da parte di Max Born , segnando il definitivo tramonto del determinismo in fisica.
Natura ondulatoria della materia: interpretazione probabilistica
La descrizione ondulatoria della materia richiede un cambio radicale di prospettiva nel modo di interpretare i fenomeni. Soprattutto quando si passa dal continuo al discreto e viceversa, si assiste spesso ad una perdita di significato di concetti ormai assimilati ed accettati. Un esempio servirà a chiarire ed a familiarizzare con il problema.
Nei fenomeni radioattivi la velocità di decadimento , cioè il numero di atomi che decadono per unità di tempo è direttamente proporzionale al numero iniziale N di atomi: v = lN.
l è detta costante di decadimento radioattivo e rappresenta la frazione di atomi che decadono nell’unità di tempo. Poniamo ad esempio l = 0,01 s-1. Ciò significa che decadono l’1% di atomi al secondo. Se consideriamo un campione iniziale di 10.000 atomi, dopo 1 secondo ne sono decaduti 100; dopo 2 secondi altri 99 (l’1% dei rimanenti 10.000 – 100 = 9.900) e così via.
Consideriamo ora un campione costituito da un singolo atomo, N = 1 e chiediamoci che significato possiamo ora dare a l. Non possiamo certo affermare che in un secondo decadrà 1/100 di 1 atomo. Un atomo, o decade, o non decade. In tal caso l rappresenta dunque la probabilità che un atomo decada nell’unità di tempo. Così l’atomo presenta 1 probabilità su 100 di decadere dopo un secondo, 2 probabilità su 100 di decadere dopo 2 secondi,…..100 su 100 di decadere dopo 100 secondi. Si comprende così il motivo per cui la vita media di un atomo radioattivo è pari al reciproco della sua costante di decadimento.
In modo simile, nell'interpretazione di Born, l'onda associata ad una particella materiale deve essere interpretata in termini di probabilità di trovare la particella in un certo volume di spazio. Su tale interpretazione torneremo più avanti, dopo aver parlato dei fondamentali apporti alla meccanica quantistica forniti da Schrödinger ed Heisenberg.
L’introduzione della interpretazione ondulatoria della materia permise a De Broglie di portare ulteriore chiarezza all'interno del modello di Bohr-Sommerfeld. Alcuni fatti che inizialmente potevano apparire arbitrari e gratuiti ora acquistavano significato.
In particolare De Broglie dimostrò che la condizione di quantizzazione del momento angolare, introdotta in modo alquanto artificioso da Bohr, poteva essere derivata direttamente dalla natura ondulatoria dell'elettrone e ne diventava una sua naturale conseguenza.
Partendo dunque dalla condizione quantistica di Bohr , sostituendo opportunamente nella prima si ottiene
Ciò significa che le orbite quantizzate di Bohr devono soddisfare la condizione di contenere un numero intero n di lunghezze d'onda di De Broglie.
E precisamente, visto che n è il numero quantico principale, la prima orbita deve contenere una lunghezza d’onda, la seconda orbita due lunghezze d’onda e così via.
Si formano in tal modo delle onde, dette onde stazionarie, tali che dopo un'orbita completa l'onda si trova esattamente in fase con se stessa. Le altre orbite non sono consentite poiché in qualsiasi altro caso ventri e cavi delle onde si sovrapporrebbero creando interferenza distruttiva. L'onda si estinguerebbe e con essa la probabilità di trovare l'elettrone.
È la stessa condizione che fissa la frequenza di vibrazione di un oscillatore vincolato, ad esempio una corda vibrante di lunghezza fissata.
Ad esempio una corda di chitarra di lunghezza L è vincolata, è cioè fissa in due punti (il ponte ed il capotasto) che ne condizionano la vibrazione. Ciò e dovuto semplicemente al fatto che i due punti vincolati non sono naturalmente in gradi di vibrare.
Tenendo ora presente che lungo la corda in vibrazione si distinguono punti in cui l'oscillazione è massima (ventri e creste) e punti in cui è nulla (nodi). La distanza tra i nodi è ovviamente pari a l/2.
Ora, una corda vincolata non è in grado di produrre qualsiasi vibrazione, poiché due nodi sono fissi per definizione in quanto coincidono con i vincoli e gli altri nodi si possono disporre, equidistanti, in modo da dividere la corda in parti uguali.
Vengono in tal modo automaticamente a formarsi solo certe caratteristiche lunghezze d'onda.
In altre parole la corda può necessariamente contenere solo un numero intero di mezze lunghezze d’onda e quindi può produrre solo quelle vibrazioni per le quali vale la relazione
L = n (l/2) n = 1, 2, 3, 4........
dove L è la lunghezza della corda.
In un oscillatore vincolato si possono dunque formare solo onde stazionarie, aventi una determinata lunghezza d'onda.
Possiamo affermare che data una certa lunghezza della corda di un particolare strumento essa possiede un caratteristico spettro discontinuo (a righe).
Quando la corda contiene mezza lunghezza d'onda la frequenza corrispondente è detta fondamentale, mentre le frequenze superiori sono dette armoniche.
Il timbro del suono, che identifica uno strumento permettendo di distinguere due note uguali emesse da strumenti diversi, è determinato dalla sovrapposizione della vibrazione fondamentale con un certo numero di armoniche, tipiche di quel dato strumento. In altre parole il timbro è l'analogo in acustica dello spettro a righe di una sostanza in spettroscopia. La natura ondulatoria dell'elettrone, "vincolato" dal nucleo che lo attrae, rende l'atomo molto simile ad uno strumento musicale.
Il modello quantistico di Bohr-Sommerfeld acquista con De Broglie caratteristiche ondulatorie che ne giustificano i postulati di base.
La meccanica matriciale di Heisenberg
Nello stesso periodo in cui Schrödinger metteva a punto la sua equazione, apparve un lavoro teorico sulla teoria dei quanti di un giovane fisico tedesco, Werner Heisenberg.
Secondo Heisenberg le variabili meccaniche delle particelle. quali la posizione, la quantità di moto, la forza etc potevano essere rappresentate non da numeri ordinari, ma attraverso strutture matematiche complesse, dette matrici. L'algebra delle matrici è molto simile all'algebra ordinaria con la notevole eccezione che la moltiplicazione non gode della proprietà commutativa. Nell'algebra delle matrici il prodotto A x B non è necessariamente uguale al prodotto B x A.
Heisenberg dimostrò che se si rappresentano tutte le grandezze che compaiono nelle equazioni della meccanica classica come matrici e si introduce la condizione aggiuntiva che la differenza tra il prodotto della quantità di moto (p) per la posizione della particella (x) e il prodotto della posizione per la quantità di moto sia uguale ad , con h costante di Planck ed i unità immaginaria, si ottiene una teoria che permette di descrivere tutti i fenomeni quantistici noti.
Se vivessimo in un mondo in cui h = 0, il prodotto px sarebbe uguale al prodotto xp, varrebbe la proprietà commutativa e tutte le relazioni quantistiche si ridurrebbero alla formulazione classica. La realtà del mondo delle particelle non sarebbe governata da fenomeni di tipo discreto, ma di tipo continuo.
Heisenberg pose inizialmente la sua meccanica matriciale in alternativa alla meccanica ondulatoria di Schrödinger. Ma quando Paul Maurice Adrien Dirac venne a conoscenza della meccanica delle matrici pubblicò un articolo nel quale dimostrò che la formulazione di Schrödinger e di Heisenberg erano equivalenti sul piano matematico. Le matrici di Heisenberg rappresentavano infatti le soluzioni tabulate dell'equazione di Schrödinger e nella soluzione di qualsiasi problema quantistico si può usare indifferentemente la meccanica ondulatoria o la meccanica delle matrici.
Il principio di indeterminazione di Heisenberg
Sebbene oggi venga prevalentemente utilizzato l'approccio ondulatorio di Schrödinger, la meccanica matriciale di Heisenberg ha prodotto un risultato teorico di enorme portata, che ci costringe a mettere in discussione dalle radici il nostro modo di concepire la realtà.
Posto che in meccanica quantistica si dicono coniugate coppie di grandezze il cui prodotto ha le dimensioni di un momento angolare, Heisenberg dimostrò che non è possibile misurare simultaneamente con una precisione grande a piacere due variabili coniugate.
Se consideriamo ad esempio le due variabili coniugate:
- posizione x di una particella rispetto all’origine di un sistema di riferimento nella direzione x
- quantità di moto p = mv della medesima particella
le indeterminazioni o incertezze nelle loro misure Dx e Dp devono soddisfare la relazione
nota come principio di indeterminazione.
In pratica se misuriamo contemporaneamente la posizione e la quantità di moto di una particella, esisterà necessariamente una indeterminazione (incertezza) nella misura delle due variabili, tale che il loro prodotto è sempre maggiore o uguale ad un mezzo acca tagliato.
Una relazione analoga vale anche per altre coppie di variabili coniugate , come ad esempio per l'energia di una particella ed il tempo necessario per misurare tale energia.
Si noti che Heisenberg ricavò tali relazioni direttamente dal formalismo matematico della teoria quantistica ed il principio risulta pertanto valido nella misura in cui vale la descrizione quantistica della realtà.
Il principio di indeterminazione non deriva dunque da una carenza nelle nostre tecniche di misurazione, ma è una conseguenza della teoria e, se questa è esatta, delle leggi di natura che la teoria descrive.
Il principio di indeterminazione condiziona evidentemente il livello di precisione delle nostre misurazioni e pone in definitiva dei limiti alla nostra capacità di conoscere la realtà. Infatti il miglior risultato che possiamo ottenere è quello in cui il prodotto delle indeterminazioni sia uguale ad un mezzo acca tagliato.
In questa caso le indeterminazioni sono inversamente proporzionali. Se dunque poniamo x ® 0, allora p ® ¥ il che significa che se tentiamo di rendere assolutamente precisa la misura della posizione di una particella (annullando l'incertezza insita nella sua determinazione), non possiamo più avere alcuna informazione riguardo alla sua quantità di moto, visto che l'indeterminazione ad essa associata diventa infinita e viceversa.
Si tratta di un'ulteriore conferma che in meccanica quantistica non è più possibile parlare di traiettorie determinate e quindi di orbite.
Certamente quando si ha a che fare con misurazioni di oggetti macroscopici è possibile trascurare il principio di indeterminazione senza incorrere in errori importanti.
Ad esempio per un corpo di massa 1 kg, tenendo conto che presenta un ordine di grandezza di 10-34 J s, possiamo in linea di principio determinare la sua posizione con un'indeterminazione di 10-15 m (con una precisione dell’ordine delle dimensioni di un nucleo atomico) e contemporaneamente la sua velocità con un'indeterminazione di 10-16 m/s, pari a 0,3 mm al secolo!
Ma nel caso di atomi e particelle subatomiche l’indeterminazione diviene ineludibile. Prendiamo ad esempio l’elettrone che viaggia intorno al suo nucleo. Esso possiede una velocità dell’ordine di un centesimo della velocità della luce.
La velocità dell’elettrone nell’atomo si può stimare eguagliando forza centrifuga e forza centripeta. Si ottiene
dove
m » 10-30 kg è la massa dell’elettrone,
e » 10-19 C è la carica dell’elettrone,
k » 10-9 è la costante di Coulomb
r » 10-10 m sono le dimensioni tipiche di un atomo.
Sostituendo opportunamente si ottengono valori dell’ordine di 106 m/s (circa un centesimo della velocità della luce).
Se ora ci proponiamo di misurare la velocità effettiva dell’elettrone con un’incertezza dell’1% pari a 104 m/s (1% di 106 m/s) dovremmo accontentarci di misurare la sua posizione con un errore di 10-8 m circa l’1% delle dimensioni atomiche.
Possiamo dunque in un certo senso affermare che tanto più grande (massiccio) è un oggetto, tanto minori sono le sue caratteristiche ondulatorie (infatti l = h/mv) e tanto minore è la sua indeterminazione, cosicché gli oggetti macroscopici sono ‘in pratica’ perfettamente localizzabili.
I minuscoli elettroni presentano invece uno spiccato carattere ondulatorio ed una forte indeterminazione relativa, rendendo perciò necessario tutto lo spazio in più che noi osserviamo intorno al nucleo e che noi chiamiamo orbitale. Se cercassimo di confinare l’elettrone in una regione più piccola la sua lunghezza d'onda sarebbe costretta a diminuire ed è facile verificare che in tal caso l'elettrone vedrebbe aumentata la sua quantità di moto e quindi la sua energia cinetica.
Lo stesso ragionamento fu utilizzato per escludere la presenza di elettroni nel nucleo quando fu accertata l'emissione di radiazione beta da nuclei radioattivi. Infatti un elettrone confinato nella piccolissima regione nucleare (10-15 m) avrebbe un'energia troppo grande e verrebbe subito espulso. Gli elettroni che formano la radiazione beta devono quindi formarsi al momento del decadimento e non essere preesistenti ad esso.
L'equazione relativistica di Dirac
La meccanica ondulatoria di Schrödinger e tutti gli sviluppi fino al 1927 non sono relativistici. Tutti i tentativi fino ad allora compiuti per integrare la relatività ristretta alle equazioni quantistiche avevano portato a risultati assurdi o in netto contrasto con i dati sperimentali.
Nel 1928 finalmente Dirac trovò una equazione quantistico relativistica in grado di descrivere l'elettrone. Essa si riduce naturalmente per piccole velocità all'equazione di Schrödinger.
L'equazione di Dirac porta però un risultato notevole. Essa dà infatti automaticamente lo spin ed il momento magnetico dell'elettrone. Mentre queste proprietà in approssimazione non relativistica devono essere aggiunte e postulate separatamente, esse derivano direttamente dal formalismo matematico di Dirac.
L'equazione di Dirac descrive in realtà non solo il moto degli elettroni, ma anche di particelle di massa uguale, ma di carica positiva, del tutto sconosciute al tempo di Dirac . Ciò fu considerato da Dirac un grave difetto della teoria, tanto che egli tentò inutilmente di verificare se esse potevano essere identificate con i protoni.
In realtà Dirac aveva postulato l'esistenza dell'antiparticella dell'elettrone, il positrone , scoperto poi da C.D. Anderson nei raggi cosmici solo nel 1932.
Meccanica quantistica: interpretazioni
La nuova meccanica dei quanti pose notevoli problemi non solo nell’interpretazione fisica del formalismo matematico, ma accese un importante dibattito di natura filosofica ed epistemologica sulle sue implicazioni gnoseologiche.
Principio di complementarietà e interpretazione di Copenaghen
La scuola di Bohr a Copenaghen divenne negli anni tra il 1920 ed il 1930, il punto di riferimento per tutti coloro che si occupavano di meccanica quantistica. È qui che nasce una lettura critica ed una sintesi filosofica dei fenomeni connessi con il mondo dei quanti che va sotto il nome di interpretazione di Copenaghen.
I due cardini di tale interpretazione sono, da una parte l'interpretazione probabilistica di Born e di Heisenberg legate al significato della funzione Y2 e del principio di indeterminazione e dall'altra il cosiddetto principio di complementarietà introdotto da Bohr.
Nella sua interpretazione della meccanica quantistica Bohr pose l'accento sulla inadeguatezza del nostro linguaggio a descrivere i fenomeni quantistici.
Inoltre, afferma Bohr, è sbagliato pensare che il compito della fisica sia quello di scoprire come la natura è. La fisica verte su ciò che della natura si può dire.
Inoltre nella meccanica quantistica non è più possibile ignorare deliberatamente le interazioni tra apparato di misura e oggetto dell'indagine. Infatti l'atto stesso di osservare un oggetto quantistico ne modifica in linea teorica lo stato.
Nell'interpretazione di Bohr i concetti di particella e di onda cessano di essere incompatibili proprio per il fatto che il comportamento ondulatorio o corpuscolare dell'oggetto studiato dipendono dal tipo di esperimento e dal dispositivo sperimentale messo in atto per le misurazioni.
Bohr tiene ad esempio a sottolineare il fatto che gli stessi strumenti, costruiti per misurare variabili diverse, come ad esempio la posizione e la quantità di moto, sono essi stessi diversi ed incompatibili. Per misurare distanze occorrono infatti regoli rigidi ed indeformabili. Per misurare quantità di moto sono invece necessari strumenti con parti mobili in grado di deformarsi all'impatto, di fatto incompatibili con i primi.
Particelle ed onde sono dunque per Bohr complementari e devono ritenersi due manifestazioni di una stessa realtà che noi catturiamo in modo diverso per il fatto che essa viene modificata dal tipo di osservazione.
In sintesi l'interpretazione di Copenaghen della teoria quantistica da una parte rifiuta il determinismo sostituendo ad esso il carattere statistico-probabilistico della realtà, dall'altra produce una revisione radicale del concetto di oggettività, accettando che la realtà possa dipendere parzialmente dal modo in cui scegliamo di osservarla.
In altre parole, mentre nella fisica classica la realtà oggettiva esiste indipendentemente dall'osservatore, nella fisica quantistica, il modo in cui decidiamo di misurare l'oggetto condiziona l'immagine stessa che di questo oggetto ci possiamo rappresentare: la realtà oggettiva non ha più esistenza autonoma a prescindere dall'osservatore.
Nella primissima versione dell’Interpretazione di Copenaghen l’azione, attraverso la quale l’oggetto quantistico acquistava significato reale, doveva essere individuata nel pensiero dell'osservatore cosciente.
Successivamente si è arrivati a formulare una versione dell’Interpretazione di Copenaghen più debole e meno impegnativa dal punto di vista filosofico, dove viene eliminata la figura un po’ ingombrante da un punto di vista scientifico dell’ osservatore cosciente, sostituita da un “interpretazione operativa”. Secondo tale interpretazione, per poter misurare una caratteristica di un oggetto fisico, occorre necessariamente interagire con esso. Questa interazione è inevitabilmente “invasiva” e perturba lo stato originario, creando appunto la piccola "indeterminazione" e “costringendo” l’oggetto a manifestarsi.
Fu anche proposta un'interpretazione termodinamica secondo la quale la realtà quantistica resta in uno stato indefinito e "non-oggettivo" fino a quando non avviene una "reazione termodinamica irreversibile". Un esempio di fenomeno irreversibile è quello che avviene su una pellicola quando viene scattata una fotografia: non è possibile far ritornare la pellicola allo stato iniziale.
Ebbene, quando una particella quantistica interagisce con un sensore lascia dei segni irreversibili e ciò è sufficiente a rivelarlo nel "mondo oggettivo" della fisica classica senza la necessità di un soggetto cosciente che testimoni tale evento.
L'effetto tunnel
Un'esemplificazione concreta delle bizzarrie quantistiche è data dal cosiddetto effetto tunnel, che comporta la materializzazione di particelle in regioni ad esse inaccessibili secondo le leggi della fisica classica.
Immaginiamo una sfera posta all'interno di un recipiente. Se sulla sfera non agisce nessuna forza essa non potrà assolutamente uscire.
Nella teoria quantistica però la particella viene descritta da un'onda di probabilità interna al recipiente, onda il cui quadrato esprime la probabilità di trovare la particella.
Si può dimostrare che se nel recipiente si trova ad esempio un elettrone, l'onda di probabilità ad esso associata si prolunga, sia pur di poco, all'esterno delle pareti del recipiente. Ne segue che l'elettrone possiede una probabilità minima, ma finita, di manifestarsi all'esterno delle pareti del recipiente. Se noi effettuassimo una serie di osservazioni troveremmo perciò l'elettrone quasi sempre all'interno del recipiente, ma in alcuni rari casi anche fuori.
L'effetto tunnel viene utilizzato ormai normalmente nell'ingegneria elettronica per amplificare i segnali elettronici.
L'attraversamento quantistico di una barriera di potenziale contribuisce altresì a giustificare il fenomeno della radioattività, dove il nucleo emette spontaneamente particelle che per la fisica classica dovrebbe trattenere.
L'effetto tunnel è stato invocato anche in astrofisica da S. Hawking per sostenere la sua teoria dell'evaporazione dei buchi neri.
Il gatto di Schrödinger ed il principio di sovrapposizione degli stati
In Meccanica Quantistica le grandezze fisiche che caratterizzano un sistema e che possono essere misurate (posizione, velocità, energia, momento magnetico, eccetera) sono chiamate osservabili.
I possibili valori che può assumere un’osservabile definiscono i potenziali stati in cui il sistema può presentarsi, detti autostati. Soltanto all'atto della misurazione fisica si può ottenere un valore reale per gli osservabili. Fintantoché non si esegue la misura il sistema quantistico rimane in uno stato che è "oggettivamente indefinito", sebbene sia matematicamente definito e costituito dalla sovrapposizione di tutti gli stati possibili. Lo stato del sistema prima della misura descrive solo una "potenzialità" ovvero contiene l'informazione relativa ad una "rosa" di valori possibili (stati di sovrapposizione), ciascuno con la sua probabilità di divenire reale ed oggettivo all'atto della misura.
In altre parole, il sistema sta potenzialmente in tutti gli stati contemporaneamente. Il suo stato diventerà "puro", unico, solo dopo e come conseguenza di una misura o di un'interazione con un altro sistema.
Nel linguaggio della meccanica quantistica, si dice che all'atto della misura dell'osservabile lo stato collassa in uno dei tanti possibili autostati ammessi da quell'osservabile. Il passaggio di un sistema fisico dal suo stato indeterminato di sovrapposizione ad un particolare autostato si definisce collasso o riduzione. All'atto della misurazione l’incertezza probabilistica viene ridotta o collassa nella certezza di un numero ben determinato. L'osservazione del fenomeno diviene quindi parte fondamentale della medesima realtà che si vuol misurare.
Proviamo a vedere un semplice esempio. Consideriamo un elettrone che si trova in un certo sistema fisico e cerchiamo di misurare la sua energia in un dato istante. Prima della misura, esso non avrà un'energia definita, ma si troverà in uno stato potenziale che contiene (ad esempio):
- l'autostato di energia 850 eV, con probabilità del 20%;
- l'autostato di energia 860 eV, con probabilità del 35%;
- l'autostato di energia 870 eV, con probabilità del 45%.
All'atto della misura del valore dell'energia, la natura dovrà "scegliere" uno dei tre possibili "autostati" dell'energia, ciascuno dei quali ha il suo valore (chiamato "autovalore"): 850 o 860 o 870 eV. Essi sono valori "quantizzati", ovvero discreti o discontinui (in parole povere non sono possibili valori intermedi, come 865 eV). Pertanto lo stato iniziale è oggettivamente "indefinito" rispetto all'osservabile energia, poiché è una combinazione (o sovrapposizione) di tre autostati diversi, ed all'atto della misurazione dovrà "collassare" in uno dei tre possibili "autostati", che danno valori validi dell'energia nella realtà fisica oggettiva. Ogni volta il risultato potrà essere diverso, e ciascun "autovalore" ha la sua probabilità di uscire.
La meccanica quantistica quindi introduce due elementi nuovi ed inaspettati rispetto alla fisica classica. Uno è appunto l'influenza dell'osservatore, che costringe lo stato a diventare un autostato; l'altro è la casualità nella scelta di uno tra i diversi possibili autostati (ognuno con una propria probabilità).
Einstein non credeva alla possibilità di caratteristiche fisiche "non-oggettive", ma riteneva che i valori delle osservabili esistessero oggettivamente anche prima della misura (realismo), indipendentemente dal fatto che venissero misurati o meno. Insomma, secondo Einstein l'universo deve esistere oggettivamente, sia che noi lo osserviamo o meno. Per questo egli considerava la meccanica quantistica "incompatibile con ogni concezione ragionevole e realistica dell'universo".
Famosa resta a questo proposito la domanda che egli pose ad un allievo durante una passeggiata serale a Princeton: «Veramente è convinto che la Luna esista solo se la si guarda?»
Secondo il "realismo" di Einstein, gli stati quantistici devono esistere oggettivamente, indipendentemente da tutte le limitazioni imposte dalla teoria quantistica, che perciò secondo Einstein è incompleta e provvisoria.
Una teoria fisica e' completa qualora ogni elemento della realtà descritta abbia corrispondenza con un elemento teorico. Esisterebbero quindi, secondo Einstein, delle "variabili nascoste" che descrivono la realtà oggettiva dei sistemi quantistici, ma non sono ancora riconosciute dall'attuale teoria e che, se scoperte, renderebbero completa la teoria quantistica.
Per fare un paragone banale, immaginiamo che in una partita di carte il nostro avversario abbia in mano una certa carta. Noi deduciamo che tale carta possa essere l'asso di denari o il re di cuori, ma poiché non possiamo vederla, non sappiamo quale delle due sia realmente. Questa, secondo Einstein è la "conoscenza incompleta" che ci può dare la meccanica quantistica. Comunque, dice Einstein, la carta in questione è di fatto una delle due carte, ad esempio l'asso di denari (variabile nascosta), anche se noi non sappiamo ancora per certo se sia l'una o l'altra (indeterminazione). All'atto della misura noi possiamo finalmente constatare di quale carta si tratti, ma secondo Einstein la carta era quella già prima della misura.
Secondo la meccanica quantistica invece non è così. La carta in precedenza era in uno stato indefinito: "50% asso di denari e 50% re di cuori", e solo all'atto della misura la carta è "diventata" (ad esempio) l'asso di denari. Se si ritorna a quello stesso identico stato fisico e si rieffettua la misura, stavolta la carta potrebbe diventare un re di cuori!
Il principio quantistico di sovrapposizione degli stati e le paradossali conseguenze di una sua applicazione a livello macroscopico sono l’argomento di un esperimento mentale ideato da Erwin Schrödinger nel 1935 e noto come il paradosso del gatto di Schrödinger.
Vediamolo descritto dalle stesse parole dell’autore.
« Si rinchiuda un gatto in una scatola d’acciaio insieme con la seguente macchina infernale (che occorre proteggere dalla possibilità d’essere afferrata direttamente dal gatto). In un contatore Geiger si trova una minuscola porzione di sostanza radioattiva, in quantità così modesta che nel corso di un’ora uno dei suoi atomi possa disintegrarsi (…). Se ciò accade, allora il contatore lo segnala e aziona un relais di un martelletto che rompe una fiala contenente del cianuro. Dopo avere lasciato indisturbato questo sistema per un’ora (…) la funzione Ψ dell’intero sistema porta ad affermare che in essa il gatto vivo e il gatto morto non sono stati puri, ma miscelati con uguale peso »
Dopo un certo periodo di tempo, quindi, il gatto ha la stessa probabilità di essere morto quanto l'atomo di essere decaduto. Visto che fino al momento dell'osservazione l'atomo esiste nei due stati sovrapposti, il gatto resta sia vivo sia morto fino a quando non si apre la scatola, ossia non si compie un'osservazione.
Il paradosso sta proprio qui. Finché non si compie l'osservazione, il gatto può esser descritto come un ibrido vivo-morto, in quanto è soltanto l'osservazione diretta che, alterando i parametri di base del sistema, attribuirà al gatto (al sistema medesimo) uno stato determinato e "coerente" con la nostra consueta realtà.
Volendo seguire alla lettera le regole quantistiche, se, all’apertura della scatola d’acciaio, lo sperimentatore trova il gatto morto, è necessario ammettere che è stato l’atto di guardare ("osservare") dentro la scatola che ha ucciso il gatto ed è quindi lo sperimentatore il responsabile della sua morte.
Se lo sperimentatore decide di rimandare indefinitamente l’osservazione della scatola, il gatto resta nel suo stato schizofrenico di vita latente fino a quando non gli viene data una dimensione definitiva, in virtù della cortese, ma capricciosa curiosità di uno sperimentatore
Paradosso EPR: Entanglement e Nonlocalità
Come abbiamo già avuto modo di dire, Einstein era estremamente critico nei confronti della Meccanica Quantistica (che pur aveva contribuito a fondare). Pur riconoscendo naturalmente che la teoria funzionava perfettamente sul piano sperimentale, sosteneva che si trattava tuttavia di una teoria incompleta e provvisoria, che avrebbe dovuto essere perfezionata col tempo per eliminare alcuni aspetti inaccettabili..
Secondo Einstein una teoria che descriva la realtà fisica deve soddisfare alcune condizioni, riassumibili attraverso i principi di "realismo", "località" e "completezza".
Il realismo è l'assunzione realistica che tutti gli oggetti debbano oggettivamente possedere dei valori preesistenti per ogni possibile misurazione prima che queste misurazioni vengano effettuate. La realtà oggettiva esiste a prescindere dall’atto di osservarla e misurarla.
Come conseguenza di ciò, la realtà fisica viene associata all’esistenza di opportune proprietà oggettive (elements of physical reality) e la completezzastrutturale di ogni teoria è espressa dalla corrispondenza tra queste proprietà e gli elementi teorici formali.
A questo proposito è rimasta celebre la sua frase: "Dio non gioca a dadi con il mondo". Meno famosa è la risposta di Bohr: "Non è compito degli scienziati dire a Dio come funziona il mondo, ma solo scoprirlo".
Il principio di località afferma che eventi distanti nello spazio non possono comunicare e quindi influenzarsi istantaneamente, senza alcuna mediazione. Sappiamo infatti che la massima velocità raggiungibile è quella della luce, il che comporta che il minimo ritardo possibile tra una causa ed il suo effetto è il tempo necessario affinché un segnale luminoso percorra lo spazio che li divide. Un effetto nonlocale è noto come "azione istantanea a distanza" («spooky action at a distance» o «azioni-fantasma») ed è incompatibile con il postulato alla base della relatività ristretta, che considera la velocità della luce la velocità limite alla quale può essere accelerata una massa.
Il realismo locale è la combinazione del principio di località e di realismo.
Einstein tentò più volte di scovare un punto debole all'interno della teoria quantistica. Uno dei suoi attacchi più famosi e che resistette più a lungo dando per molto tempo filo da torcere ai fisici quantistici fu il cosiddetto esperimento mentale EPR, dai nomi di coloro che lo avevano proposto nel 1935: Einstein, Rosen e Podolsky.
Gli autori intendevano dimostrare che se si accettano gli assunti della fisica quantistica veniva automaticamente violato il principio di località oppure era necessario affermare che la teoria quantistica era incompleta. In quest'ultimo caso sarebbe stato possibile ipotizzare l'esistenza di una teoria subquantica. Esisterebbero cioè delle variabili nascoste, ancora da scoprire, capaci di fornire le informazioni mancanti, permettendo così di cancellare il principio di indeterminazione e di ritornare ad una visione deterministica del mondo.
Naturalmente il gruppo di fisici mirava a dimostrare che la teoria quantistica era incompleta dal momento che il principio di località è uno dei principi fondamentali della fisica.
L’esperimento EPR è costruito su di una proprietà dei sistemi quantistici nota come entaglement. La possibilità teorica di questo fenomeno venne ipotizzata da Erwin Schrödinger nel 1926, anche se egli utilizzò per la prima volta il termine entanglement nel 1935 proprio nella recensione dell'articolo di Einstein, Podolsky e Rosen.
L'entanglement quantistico (letteralmente intreccio) o correlazione quantistica è un fenomeno che coinvolge due o più particelle generate da uno stesso processo o che si siano trovate in interazione reciproca per un certo periodo. Tali particelle rimangono in qualche modo legate indissolubilmente (entangled), nel senso che quello che accade a una di esse si ripercuote immediatamente anche sull'altra, indipendentemente dalla distanza che le separa. Il termine viene a volte reso in italiano con 'non-separabilità', in quanto uno stato entangled implica la presenza di correlazioni tra le quantità fisiche osservabili dei sistemi coinvolti.
Per esempio, è possibile realizzare un sistema entangled costituito da due particelle il cui stato quantico sia tale che - qualunque sia il valore di una certa proprietà osservabile assunto da una delle due particelle - il corrispondente valore assunto dall'altra particella sarà univocamente definito, nonostante i postulati della meccanica quantistica, secondo cui predire il risultato di queste misure sia impossibile. Di conseguenza in presenza di entanglement la misura effettuata su un sistema sembra influenzare istantaneamente lo stato di un altro sistema..
Vi sono molte versioni alternative ed equivalenti dell’esperimento EPR. In una di queste un sistema costituito di 2 particelle A e B dotate di spin ½ antiparalleli viene «preparato» in uno stato entangled da una breve interazione. Le due particelle sono poi lasciate libere di propagare verso due lontane stazioni di misura: Finchè la misura non viene effettuata ciascuna particella possiede la medesima probabilità di avere spin +½ e -½. (stati sovrapposti).
Si ipotizzi ora di misurare lo spin della particella A e di ottenere il valore + ½. Qui avviene qualcosa di assolutamente straordinario, poiché nello stesso istante la funzione d’onda della particella B subisce la riduzione: (collasso) al valore -½ con velocità dunque superiore a quella della luce, e questo senza necessità di effettuare materialmente la misura. Naturalmente se la misura dello spin di A fornisse valore -½, lo spin di B assumerebbe istantaneamente il valore +½.
E come se l’informazione ottenuta dalla misura effettuata sulla particella A producesse un’azione istantanea a distanza sulla particella B, costringendola ad assumere un particolare valore. Questo fenomeno sconcertante, sconosciuto al mondo classico, si chiama Nonlocalità Quantistica.
Da questo argomento EPR traggono la seguente conclusione: o il mondo è nonlocale (vi sono azioni in un posto che hanno ripercussioni immediate in un posto lontanissimo) oppure la meccanica quantistica non è completa. Infatti, se pensiamo che le particelle possiedano già un valore di spin ben determinato, ancorché a noi sconosciuto, scompare l’esigenza di invocare azioni a distanza ed il paradosso non è più tale.
La disuguaglianza di Bell e l’esperimento di Aspect
Solo nel 1965 John Bell, teorico del CERN, mise a punto un metodo che avrebbe potuto verificare l’esistenza o meno la presenza di effetti nonlocali in meccanica quantistica. Egli adottò i due assunti basilari di Einstein Podolsky e Rosen - l'inesistenza di segnali più veloci della luce e l'esistenza di una realtà oggettiva indipendente dalle misurazioni dello sperimentatore - e li utilizzò per costruire una relazione matematica in forma di disuguaglianza tra le misurazioni effettuate sulla particella 1 e le misurazioni effettuate sulla particella 2.
Effettuando un esperienza EPR, la disuguaglianza sarebbe stata soddisfatta nel caso l'impostazione di Einstein fosse stata corretta..
L'esperimento non poté però essere effettuato per tutti gli anni '70, poiché la tecnologia non permetteva di raggiungere i limiti di precisione richiesti.
Infatti per essere certi che due particelle separate non comunichino in modo non convenzionale (cioè istantaneamente), è necessario eseguire le misurazioni su entrambe le particelle entro un intervallo di tempo così breve che in esso nessun segnale che viaggi alla velocità della luce (o a una velocità inferiore) possa essere scambiato tra loro. Per particelle separate tra loro da una distanza di un metro, ciò significa che le misurazioni non devono impiegare più di qualche miliardesimo di secondo.
Solo nel 1982 Alain Aspect riuscì ad ottenere, in un famoso esperimento la precisione richiesta, dimostrando che Einstein aveva torto.
La nonlocalità, un monstrum scientifico secondo l’esperienza e l’intuizione umana, è ormai una proprietà generalmenteaccettata del mondo quantistico
Nella figura di seguito riportata vediamo una schematizzazione delle apparecchiature utilizzate da Aspect e collaboratori nei loro esperimenti. Al centro si trova un atomo di Calcio il cui decadimento produce una coppia di fotoni correlati che si muovono lungo percorsi opposti. Lungo uno di questi percorsi (nel caso rappresentato in figura, il Percorso A), di tanto in tanto e in maniera del tutto casuale, viene inserito un "filtro" (un Cristallo Birifrangente) il quale, una volta che un fotone interagisce con esso, può, con una probabilità del 50 %, deviarlo oppure lasciarlo proseguire indisturbato per la sua strada. Agli estremi di ogni tragitto previsto per ciascun fotone è posto un rivelatore di fotoni.
Ora, la cosa straordinaria verificata da Aspect con le sue apparecchiature è che nel momento in cui lungo il Percorso A veniva inserito il Cristallo Birifrangente e si produceva una deviazione verso il rivelatore c del fotone 1, anche il fotone 2 (ovvero il fotone del Percorso B; il fotone separato e senza "ostacoli" davanti), "spontaneamente" ed istantaneamente, deviava verso il rivelatore d. Praticamente l’atto di inserire il Cristallo Birifrangente con la conseguente deviazione del fotone 1, produceva un effetto istantaneo a distanza sul fotone 2, inducendolo a deviare.
Tutto ciò può sembrare strano, ma è quello che effettivamente accade quando si eseguono esperimenti su coppie di particelle correlate.
Conclusioni
La teoria di Newton, nella forma equivalente ma più elegante che le fu data in seguito da Hamilton, mostra che, se due corpi sono trattati come un sistema in prima approssimazione chiuso, le equazioni complete del moto possono essere dedotte dalla relazione che dà l'energia totale (potenziale + cinetica), in funzione delle masse, delle posizioni e delle quantità di moto.
In base a tale relazione, conoscendo la posizione e la quantità di moto ad un certo momento (condizioni iniziali), è sempre possibile calcolare i valori che tali grandezze assumeranno o hanno assunto in un qualsiasi momento del futuro o del passato. E tutto ciò con una precisione che dipende solamente dalla perfezione degli strumenti di misura.
In tal modo Newton introdusse nel 1687 nei suoi 'Principia Mathematica' il concetto di un sistema chiuso completamente deterministico.
Sotteso ed implicito in ciò vi era naturalmente la ferma convinzione che tale sistema esistesse ed evolvesse in modo perfettamente determinato indipendentemente dal fatto che l'uomo lo osservasse o meno. È l'assunto dell'oggettività del mondo fisico.
Fu poi Laplace a generalizzare questo concetto estendendolo all'intero universo concepito come il sistema chiuso per eccellenza, funzionante come un gigantesco meccanismo d'orologeria.
Nel suo "Theorie analytique des Probabilites" (1820), scrisse
"Un'intelligenza che conosca ad un dato istante tutte le forze agenti in natura assieme alla posizione istantanea di tutti i corpi che costituiscono l'universo è in grado di includere i moti dei maggiori corpi dell'universo e degli atomi più leggeri in una sola formula, ammesso che il suo intelletto sia sufficientemente potente da analizzare tutti i dati; niente è incerto per lui, sia passato, sia futuro sono presenti ai suoi occhi."
La meccanica quantistica ha infranto il sogno di Laplace, dimostrando che l'oggettività è un fantasma prodotto dal mondo macroscopico, ma che nel microcosmo gli oggetti esistono in modo diverso in funzione del tipo di osservazione cui sono sottoposti. Essi non hanno esistenza oggettiva, ma soggettiva, il loro mostrarsi dipende dal soggetto che li osserva.
Anche il sogno di un mondo perfettamente determinato e misurabile si è infranto contro le equazioni quantistiche. La nostra conoscenza della realtà non potrà più pretendere di essere perfetta. Dobbiamo accettare la necessità di una 'naturale’ indeterminazione, dietro la quale si nasconde una porzione di realtà attualmente per noi inconoscibile.
Nel '700 si fece strada l'idea che il caso potesse costituire l'oggetto di uno studio matematico e Laplace e altri scoprirono le leggi che governano ad esempio il gioco d'azzardo.
La cosa che forse più colpisce è che, sebbene oggi la casualità sia trattata attraverso le leggi della statistica e del calcolo delle probabilità, i matematici non riescono a dare una definizione di casualità.
Il matematico Richard von Mises ha dato una definizione operativa di un processo casuale. Secondo Von Mises, un processo è casuale se è imbattibile. Se cioè in pratica, dopo molti tentativi, qualunque strategia noi adottiamo per prevederne i risultati, i nostri sforzi risultano vani.
Se cerchiamo il caso in natura, scopriamo che il posto migliore dove trovarlo è proprio l'atomo. Non esiste casualità paragonabile a quella quantistica.
Sottoposti a controlli di casualità processi quali i decadimenti radioattivi superano ogni prova.
La casualità quantistica è imbattibile.
Il Dio che gioca a dadi non bara!
Fonte: http://www.pianetachimica.it/didattica/documenti/Chimica_Generale.doc
Sito web: http://www.pianetachimica.it/
autore : prof Mauro Tonellato
Modelli atomici quanto-meccanici
Visita la nostra pagina principale
Modelli atomici quanto-meccanici
Termini d' uso e privacy