Scienze della terra

 


 

Scienze della terra

 

Questo sito utilizza cookie, anche di terze parti. Se vuoi saperne di più leggi la nostra Cookie Policy. Scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all’uso dei cookie.I testi seguenti sono di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente a studenti , docenti e agli utenti del web i loro testi per sole finalità illustrative didattiche e scientifiche.

 

 

Scienze della Terra - Sommario


(Maggio 2010)

 

 

1      Reticolato geografico
1.1       Riferimenti geografici
1.2       Coordinate geografiche: latitudine e longitudine
2      Elementi di Geodesia
2.1       Le dimensioni della Terra: misura di un arco di meridiano
2.2       La forma: schiacciamento polare
2.3       L’ellissoide
2.4       Coordinate geocentriche e geografiche
2.5       Gravimetria
2.6       Il geoide
2.6.1       Deviazioni della verticale
2.6.2       Anomalie gravimetriche
3      Moti della terra
3.1       Moto di rotazione
3.1.1       Prove del moto di rotazione
3.1.1.a     Esperienza di Guglielmini
3.1.1.b     Esperienza di Foucault
3.1.2       Conseguenze del moto di rotazione terrestre
3.1.2.a     Alternarsi del dì e della notte
3.1.2.b     Le forze d’inerzia: forza centrifuga e forza di Coriolis
3.1.2.c     Forza centrifuga e schiacciamento polare
3.1.2.d     Forza di Coriolis e legge di Ferrel
3.1.3       Durata del moto di rotazione: il giorno
3.2       moto di rivoluzione
3.2.1       Prove del moto di rivoluzione
3.2.1.a     Parallasse annua
3.2.1.b     Diversa durata del giorno solare
3.2.1.c     Aberrazione delle stelle fisse
3.2.2       Conseguenze del moto di rivoluzione: alternarsi delle stagioni
3.3       Moto doppio conico dell'asse e precessione degli equinozi
3.3.1       Conseguenze della precessione
3.4       Durata del periodo di rivoluzione: l'anno
3.5       moti minori millenari
3.5.1       Movimento di rotazione della linea degli apsidi
3.5.2       Variazione dell'eccentricità dell'orbita
3.5.3       Variazione dell'inclinazione dell'asse
3.5.4       Nutazioni
3.6       moto rispetto al centro galattico
4      La Misura del Tempo
4.1       Il calendario
4.2       Fusi orari
4.3       Linea di cambiamento di data
5      L’Orientamento
5.1       Orizzonte e punti cardinali
5.2       Orientamento diurno
5.3       Orientamento notturno
5.4       Declinazione magnetica
5.5       Determinazione delle coordinate geografiche
5.5.1       Latitudine di notte
5.5.2       Latitudine di giorno
5.6       Longitudine
6      La luna
6.1       l’aspetto fisico
6.2       Moto di rotazione
6.3       Sistema Terra-Luna
6.4       Moto di rivoluzione e fasi lunari
6.5       Mese sidereo
6.6       Mese sinodico e ciclo delle lunazioni (Metone)
6.7       La luna e le maree
6.8       Mese draconico, retrogradazione dei nodi ed eclissi
6.8.1       Eclisse di Luna
6.8.2       Eclisse di Sole (occultazione)
6.8.3       Il ciclo delle eclissi (Saros)
6.9       Librazioni
6.10    L'orbita della luna intorno al sole
6.11    Ipotesi sull'origine della luna
6.11.1     Ipotesi della fissione
6.11.2     Ipotesi della cattura
6.11.3     Ipotesi dell’accrescimento
6.11.4     Ipotesi dell’impatto meteorico
7      Petrologia
7.1       Minerali e rocce
7.2       Cenni di cristallografia
7.3       Cenni di mineralogia
7.3.1       Polimorfismo ed isomorfismo
7.4       I Silicati
7.5       Le rocce: classificazione
7.6       Rocce ignee o magmatiche
7.6.1       Rocce intrusive (Plutoniti)
7.6.2       Rocce effusive (Vulcaniti)
7.6.3       Rocce ipoabissali (ipoabissaliti)
7.6.4       Caratteristiche chimico-fisiche dei magmi
7.6.4.a     Magmi acidi o sialici (silice > 65%)
7.6.4.b     Magmi basici o femici (silice < 52%)
7.6.4.c     Magmi intermedi o neutri (silice 52% - 65%)
Approfondimento
7.6.5       Differenziazione magmatica: serie di Bowen
7.6.5.a     Serie discontinua
7.6.5.b     Serie continua
7.6.6       Genesi ed evoluzione del magma: magma primario e magma anatettico
7.7       Le rocce sedimentarie
7.7.1       Rocce sedimentarie clastiche o detritiche
7.7.1.a     Degradazione o alterazione di una roccia preesistente
7.7.1.b     Fenomeni di degradazione fisica
7.7.1.c     Fenomeni di degradazione chimica
7.7.1.d     Erosione
7.7.1.e     Trasporto dei clasti
7.7.1.f      Sedimentazione
7.7.1.g     Diagenesi o Litificazione
7.7.2       Classificazione delle rocce clastiche
7.7.2.a     Le ruditi (o psefiti)
7.7.2.b     Le areniti o arenarie (o psammiti)
7.7.2.c     Le peliti (o lutiti)
7.7.3       Piroclastiti
7.7.4       Rocce sedimentarie di deposito chimico
7.7.5       Rocce sedimentarie organogene
7.7.5.a     Calcari organogeni
7.7.5.b     Selci organogene
7.7.5.c     Fosforiti
7.7.5.d     Carbone e petrolio
7.8       Le rocce metamorfiche
7.8.1       La temperatura ed il grado metamorfico
7.8.2       L’azione della pressione: la scistosità
7.8.3       Tipi di metamorfismo
7.8.3.a     Metamorfismo di carico
7.8.3.b     Metamorfismo regionale
7.8.3.c     Metamorfismo di contatto o termico
7.8.3.d     Metamorfismo dinamico o cataclastico
7.8.4       Classificazione delle rocce metamorfiche
8      Sismologia
8.1       I terremoti
8.2       Le onde sismiche
8.2.1       Onde longitudinali
8.2.2       Onde trasversali
8.2.3       Le onde di superficie
8.2.3.a     Onde di Love
8.2.3.b     Onde di Rayleigh
8.2.4       Fenomeni di rifrazione e riflessione
8.2.5       Le oscillazioni libere
8.3       Sismografi
8.4       Scale sismiche
9      Vulcanologia
10        Geodinamica
10.1    L’attualismo
10.2    Le teorie orogenetiche: isostasia e geosinclinali
10.3    Wegener e la deriva dei continenti
10.4    Indizi per una teoria geodinamica globale
10.4.1     Discordanze dei dati paleomagnetici
10.4.2     Coincidenza tra aree sismiche e vulcaniche
10.4.3     Scoperta di ipocentri profondi: il piano di Benioff
10.4.4     Hess e l’espansione dei fondali oceanici
10.5    Teoria della tettonica a zolle
10.5.1     I margini divergenti
10.5.1.a       Le dorsali oceaniche
10.5.1.b       Le fosse tettoniche
10.5.2     margini convergenti
10.5.2.a       Convergenza litosfera oceanica - litosfera continentale
10.5.2.b       Convergenza litosfera oceanica - litosfera oceanica
10.5.2.c       Convergenza litosfera continentale - litosfera continentale
10.5.3     margini trasformi

 

 

 

Reticolato geografico

 

Riferimenti geografici

Al fine di individuare un punto sulla superficie terrestre in maniera univoca si utilizza un sistema di riferimento, analogo al sistema di assi cartesiani con il quale misuriamo le coordinate di un punto sul piano. Gli assi di riferimento (analoghi all'asse delle ascisse e delle ordinate) sono stati convenzionalmente fissati nell'equatore e nel meridiano di Greenwich.

  • L'equatore è il cerchio massimo ottenuto dall'intersezione della superficie terrestre con un piano passante per il centro della terra e perpendicolare all'asse di rotazione terrestre. Tutti gli infiniti piani che intersecano la superficie terrestre parallelamente al piano equatoriale individuano altrettante circonferenze, di raggio via via minore man mano che ci avviciniamo ai poli, dette paralleli.
  • intersecando la superficie terrestre con dei piani contenenti l'asse di rotazione terrestre si ottengono infinite circonferenze passanti per i due poli geografici. Ciascuna metà di tali circonferenze congiungenti il polo Nord al polo Sud è detta meridiano. Convenzionalmente il meridiano fondamentale di riferimento è quello che passa per l'osservatorio astronomico di Greenwich.

L'insieme dei meridiani e dei paralleli forma una griglia detta reticolato geografico.

 

Coordinate geografiche: latitudine e longitudine

Come in un sistema di assi cartesiani possiamo individuare in modo univoco un punto sul piano attraverso due numeri detti coordinate che esprimono la distanza del punto (misurata perpendicolarmente agli assi) dagli assi x ed y di riferimento, così sulla superficie terrestre possiamo calcolare la posizione di un punto tramite le sue coordinate geografiche, la sua distanza cioè dagli assi geografici di riferimento (equatore e meridiano di Greenwich). Le coordinate geografiche prendono il nome di latitudine e longitudine. Trovandoci su di una superficie sferica, latitudine e longitudine non si misurano in unità di misura di lunghezza (m km etc), ma attraverso unità di misura di ampiezza, cioè in gradi e sottomultipli (1° = 60' ; 1' = 60'') Così la latitudine (j) di un punto P è la distanza angolare del punto dall'equatore misurata lungo l'arco del meridiano passante per P (cioè misurata perpendicolarmente all'equatore). In altre parole è l'angolo sotto il quale viene visto dal centro della terra l'arco di meridiano che congiunge P all'equatore. La longitudine (l) del punto P è invece la distanza angolare del punto P dal meridiano di Greenwich, misurata lungo l'arco di parallelo che passa per P (cioè misurata perpendicolarmente al meridiano di Greenwich. In altre parole è l'angolo sotto il quale viene visto dal centro della terra l'arco di equatore che congiunge il meridiano di Greenwich al meridiano passante per P. Normalmente sulla superficie terrestre vengono segnati solo i paralleli ed i meridiani di grado, cioè quelli che distano un grado l'uno dall'altro(meridiani e paralleli sono però infiniti).
I paralleli di grado sono 89 a Nord dell'equatore (il polo Nord è un punto) e 89 a Sud dell'equatore (il polo Sud è un punto) per un totale di 179, equatore compreso. I meridiani di grado sono naturalmente 360. La latitudine va dunque da 0° (equatore) a 90° Nord (polo Nord) e 90° Sud (polo Sud). La longitudine va da 0° (Greenwich) a 180° Est (antimeridiano di Greenwich) e 180° Ovest (antimeridiano di Greenwich). Dando la sola latitudine non si individua un punto, ma un intero parallelo (tutti i punti che compongono un parallelo possiedono infatti la medesima latitudine). Dando solo la longitudine si individua un intero meridiano. Dando latitudine e longitudine si individua il punto di intersezione tra parallelo e meridiano.


 

Elementi di Geodesia

La Geodesia è la disciplina che studia la forma e le dimensioni della Terra.
Possiamo far risalire a Pitagora (570-490 ca a.C.) l’idea della sfericità della terra, come conseguenza di speculazioni teoriche sulla perfezione della forma sferica (sembra comunque che gli Egizi ne fossero a conoscenza parecchi secoli prima). Successivamente, da Eudosso di Cnido (408-355 ca a.C.) fino ad Aristotele (384-322 a.C.), si accumularono numerose evidenze tese a confermare sperimentalmente tale ipotesi. Famose, e ancor oggi citate, sono:

  • una nave in avvicinamento compare all’orizzonte mostrandoci prima l’albero e poi lo scafo
  • l’altezza della stella polare sull’orizzonte aumenta mentre ci dirigiamo verso nord
  • la porzione di orizzonte visibile aumenta con l’altezza dell’osservatore (quota)
  • l’ombra proiettata dalla terra sulla luna durante un’eclissi è sempre una circonferenza (se la terra fosse un disco, nei casi in cui fosse disposta obliquamente rispetto ai raggi solari la sua ombra sarebbe un’ellisse).
  •  

Le dimensioni della Terra: misura di un arco di meridiano

Per i greci la sfericità della terra divenne un fatto talmente scontato che giunsero addirittura a stimarne la circonferenza. La prima stima delle dimensioni terrestri viene infatti fatta risalire ad Eratostene (Cirene 273 - Alessandria 192 a.C.), il quale determinò la lunghezza della circonferenza terrestre misurando l'ampiezza dell'arco di meridiano che univa Alessandria ad Assuan (l'antica Siene). Eratostene aveva notato che durante il solstizio d'estate a mezzogiorno i raggi solari risultavano perpendicolari a Siene, mentre ad Alessandria producevano ombra. L'inclinazione dei raggi solari rispetto alla verticale di Alessandria fu misurata da Eratostene in 1/50 di angolo giro.

 

 

 

 


Poichè tale angolo è evidentemente uguale all'angolo al centro che sottende l'arco di meridiano che unisce Alessandria a Siene e la distanza tra le due città era allora stimata in 5.000 stadi egiziani (il valore forse non era estremamente accurato poiché era fornito dai bematisti, corrieri che venivano pagati a passo (bema = 0,74m)), una semplice proporzione permette di calcolare la lunghezza dell'intera circonferenza, pari a 50 volte 5.000 stadi (250.000 stadi, valore sorprendentemente vicino alle stime attuali    –   1 stadio alessandrino = 184,8 m). Il metodo di Eratostene è fondamentalmente usato ancora oggi. Esso pone però dei problemi per quel che riguarda l'accuratezza e l'attendibilità nella misura delle lunghezze (gli angoli si misurano con estrema precisione).  Si pensi ad esempio che nel 1527 J. Fernel, medico di corte del re di Francia, valutò la distanza tra Parigi ed Amiens contando il numero di giri effettuati dalle ruote della sua carrozza, ottenendo una misura del grado di meridiano di 111 km.  La misura delle lunghezze giunse ad una precisione accettabile con l'introduzione del metodo della triangolazione. Nel 1617 l'olandese Willebrord Snell (Snellius, ) pubblicò i risultati del primo rilevamento geodetico (1615) eseguito con tale metodo (proposto verso la fine del '500 da Brahe), in cui ottenne come lunghezza del grado di meridiano 55.100 tese (circa 107,4 km).
Il metodo si basa sulla individuazione sulla superficie terrestre di una catena di triangoli aventi vertici e lati in comune, costruiti in modo da raccordare gli estremi A e G dell'arco di meridiano. Si esegue con grande precisione la misura di un solo lato (base geodetica) di cui si determina anche l'orientamento rispetto al meridiano, mentre tutti gli altri lati si ricavano dalle misure degli angoli (molto più semplici e precise da effettuare rispetto alle misure di distanza), utilizzando le usuali regole della trigonometria. La misura dell'arco AG si ottiene come somma delle proiezioni dei lati dei triangoli sul meridiano stesso.

 

La forma: schiacciamento polare

Fino alla metà del Seicento si riteneva che la terra fosse perfettamente sferica. Ciò comportava che la misura di un arco di meridiano di 1° poteva essere effettuata a qualsiasi latitudine, fornendo sempre il medesimo risultato. I primi dubbi sul fatto che la terra fosse una sfera perfetta sorsero in seguito ai risultato conseguiti nel 1671 dall'astronomo francese J. Richer. Nell'ambito delle attività promosse dalla Académie des Sciences di Parigi, Richer si era trasferito nell'isola di Cayenne nella Guyana francese, per osservare in contemporanea con Gian Domenico Cassini (Cassini I), rimasto a Parigi, un'opposizione di Marte. Lo scopo della duplice osservazione era di determinare (essendo nota la distanza tra i due punti di osservazione) la parallasse del pianeta e quindi il valore dell’Unità Astronomica (sapendo che Marte dista dal Sole 1,52 UA quando è in opposizione dista dalla terra 1,52 – 1 = 0,52 UA). Ma Richer scoprì che in Guyana, a 5° di latitudine nord, il pendolo che si era portato da Parigi per la misura del tempo ritardava di circa 2,5 minuti al giorno. Richer spiegò il fenomeno ipotizzando che la terra non fosse perfettamente sferica, ma rigonfia nelle zone equatoriali. Venuto a conoscenza del fenomeno, Newton, che in quel periodo lavorava alla sua teoria della gravitazione, intuì che l'effetto sul pendolo poteva essere spiegato con una diminuzione locale del valore dell'accelerazione di gravità g. Il periodo di oscillazione di un pendolo di lunghezza l è infatti pari a                                                                
In effetti la diminuzione che il valore di g manifesta mentre ci si avvicina all'equatore è dovuta a due componenti:
a) aumento della forza centrifuga, legato all'aumento della distanza D dall'asse di rotazione
b) diminuzione della forza gravitazionale, legata alla maggior distanza R dal centro della terra
). Se ipotizziamo che la terra si possa comportare almeno parzialmente come un fluido, la forza centrifuga, il cui valore cresce costantemente dai poli (dove è nulla, D = 0) all'equatore (dove assume il valore massimo (D = R), deve averla deformata, provocando un rigonfiamento all'equatore ed una depressione ai poli. Il raggio terrestre non deve quindi essere costante alle varie latitudini e con esso anche l'arco di meridiano di 1°.  In base a considerazioni teoriche Newton era dunque convinto dello schiacciamento polare della terra, mentre in Francia Cassini sosteneva che la terra fosse protuberante ai poli. Ora, poiché si può dimostrare che se la terra è rigonfia all'equatore un grado di meridiano assume il suo valore massimo nelle zone polari, per diminuire man mano che ci spostiamo verso le basse latitudini, la questione poteva essere risolta misurando e confrontando archi di meridiano di egual ampiezza misurati a diverse latitudini.  
Per poter ottenere dati  conclusivi l'Accademia delle Scienze inviò due spedizioni a misurare un grado di meridiano al polo e all'equatore, dove le eventuali differenze sarebbero state sicuramente evidenti.   Il risultato confermò l’ipotesi di Newton e verso la seconda metà del ‘700 venne definitivamente accettata l’idea dello schiacciamento polare della terra.
Uno dei compiti fondamentali della geodesia è dunque descrivere la forma di tale sfera deformata.
Se ipotizziamo che la terra si comporti come una sfera fluida in equilibrio sotto l'azione delle forze ad essa applicate (gravitazionali e centrifughe), la sua superficie dovrebbe disporsi sempre perpendicolarmente alla risultante di tali forze (gravità), in modo tale che non si produca nessun lavoro netto che possa ulteriormente modificarne la forma (un movimento perpendicolare alla forza non compie infatti lavoro). Tale superficie teorica può essere calcolata e prende il nome di sferoide.

 

L’ellissoide

Per ragioni di praticità lo sferoide viene sostituito con un ellissoide di rotazione che ha gli stessi semiassi (a e b) dello sferoide. Si trova infatti che l’ellissoide coincide con lo sferoide, con differenze  nel raggio che non superano i 14 metri). Poichè dunque per i calcoli l'ellissoide risulta più semplice, si è convenuto di assumere quest'ultimo come superficie teorica di riferimento per rappresentare la forma della terra. L’equazione che lega il raggio dell’ellissoide alla latitudine geocentrica  è

Dove b è il semiasse minore, mentre il rapporto tra le dimensioni reciproche dei due semiassi è espresso da un parametro detto eccentricità e, per il quale vale la relazione

dove c è la distanza tra il fuoco ed il centro (rmax – rmin = 2c)
Il rapporto tra le dimensioni reciproche dei due semiassi può essere espresso anche attraverso lo schiacciamento polarea (o ellitticità o ellissoidicità), per il quale vale la relazione

E’ semplice verificare come tra schiacciamento polare ed eccentricità sussista la seguente relazione
e2 = 2 - 2

 

Coordinate geocentriche e geografiche

La relazione che descrive l’ellissoide non può essere utilizzata direttamente per calcolare la distanza di un punto P dal centro della terra o la lunghezza di un arco di meridiano, in quanto noi non misuriamo la latitudine geocentrica (c), ma la latitudine geografica o geodetica (g), cioè l'angolo che la verticale del luogo (direzione del filo a piombo) forma con il piano equatoriale. Possiamo comunque calcolare quale sarebbe la direzione della verticale teorica sull'ellissoide di riferimento (conoscendo l’equazione di una curva è possibile determinare l’equazione della retta tangente in un punto e di conseguenza l’equazione della retta ad essa perpendicolare). Nota la direzione della verticale teorica è possibile determinare la relazione tra latitudine geocentrica e latitudine geografica ellissoidica.  Si può dimostrare che tra latitudine geocentrica e geografica esiste la seguente relazione
 
Si noti comunque che la verticale ellissoidica è solo teorica in quanto non coincide necessariamente con la verticale vera (filo a piombo). Ciò è dovuto all'esistenza di disturbi gravitazionali locali (anomalie gravimetriche), legati alla non omogenea distribuzione delle masse terrestri, che producono deviazioni sul filo a piombo.
Trovata l’equazione che descrive l’ellissoide in funzione della latitudine geografica è possibile utilizzarla per fissare in modo univoco le dimensioni dell'ellissoide di riferimento. Per far ciò è necessario determinare il valore di almeno due parametri. In genere viene determinato il valore del semiasse maggiore (a) e dello schiacciamento polare ().
La determinazione di tali parametri può essere fatta confrontando misure di lunghezza di archi di meridiano fatte a latitudini geografiche diverse.
In effetti per ottenere risultati attendibili è necessario effettuare molte misurazioni. Ciò è dovuto al fatto che nelle relazioni utilizzate per i calcoli compaiono, come si è detto, le latitudini geografiche ellissoidiche (riferite alla verticale teorica sull'ellissoide), mentre noi misuriamo le latitudini geografiche astronomiche (l'altezza delle stelle sull'orizzonte riferita alla verticale vera). Poichè d'altra parte le deviazioni del filo a piombo rispetto alla verticale teorica ellissoidica si distribuiscono casualmente sia in eccesso che in difetto, in un numero elevato di misurazioni  le deviazioni assumono carattere di errore accidentale, eliminabile con opportuni procedimenti statistici di calcolo.

Lo schiacciamento può essere calcolato anche con misure gravimetriche. In questi ultimi anni si sono ottenuti risultati di elevata precisione nella misura dello schiacciamento utilizzando il fenomeno di precessione dei satelliti artificiali Il rigonfiamento equatoriale disturba gravitazionalmente le orbite dei satelliti artificiali. Ciò produce un momento torcente che tenderebbe a far coincidere il piano orbitale con il piano equatoriale. Poichè il momento angolare del satellite si conserva, il risultato è un moto di precessione, un progressivo spostamento del punto di intersezione dell'orbita del satellite con il piano equatoriale. La misura di tale spostamento tra due successivi passaggi di un satellite all'equatore fornisce una misura piuttosto precisa dello schiacciamento polare .

Con lo scopo di promuovere le ricerche sulla forma e le dimensioni della Terra, nel 1861 venne fondata l"Associazione Internazionale per la Misura del Grado" trasformatasi poi nell'"Unione Geodetica e Geofisica Internazionale" (IUGG).
Nel 1924 la IIa Assemblea Generale dell'IUGG decise di assumere convenzionalmente come ellissoide internazionale di riferimento quello calcolato da Hayford (a = 6.378.388; = 1/297).
Nel 1967 l'IUGG propose un nuovo ellissoide, detto ellissoide di riferimento 1967 con a = 6.378.160 e = 1/298.25, ma l'ellissoide di Hayford resta ancor oggi diffusamente utilizzato nelle applicazioni geodetiche. L'Istituto Geografico Militare utilizza invece per la cartografia 1:100.000 l'ellissoide di Bessel.

 

Gravimetria 

Essendo l'ellissoide una superficie teorica equipotenziale è possibile calcolare in modo preciso il valore del campo gravitazionale teorico ad essa associato. Il valore dell'accelerazione di gravità teorica sull'ellissoide è detto gravità normale .

 

 

L'accelerazione di gravità g è misurata, in onore di Galileo, in gal.  1 gal = 1 cm/s2. Le misure di gravità possono essere assolute o relative: con le misure assolute si determina direttamente il valore di g in un certo luogo, con le misure relative (molto più semplici da effettuare) si ottiene il rapporto o la differenza di gravità tra un luogo ed un altro di cui si possieda una misura assoluta.
Le misurazioni assolute di gravità si eseguono essenzialmente utilizzando il pendolo (). Le misure relative si eseguono tramite gravimetri, i quali ci forniscono il valore di g utilizzando la relazione tra forza-peso P e massa m (P = mg).  Un gravimetro è in pratica costituito da una massa m sostenuta da  una molla. Dopo esser stato tarato in un luogo di cui sia nota la gravità assoluta, il gravimetro misura le differenze di peso P (e quindi di g) che la massa m (considerata costante) manifesta in luoghi diversi rispetto al luogo di taratura.
Le misure gravimetriche così effettuate forniscono valori di gravità effettivi, determinati sulla superficie fisica della terra. Per poter essere confrontati con i valori della gravità normale teorica devono essere corretti per tener conto dell'altezza, della distribuzione locale delle masse (rilievi e avvallamenti), della loro densità etc. Le correzioni da apportare ai valori misurati per ottenere i valori teorici (normali) vanno sotto il nome di riduzione all'ellissoide.

 

Il geoide

L'ellissoide è evidentemente una rappresentazione geometrica della terra che non tiene conto delle irregolarità della crosta terrestre. Se i valori di g opportunamente ridotti coincidessero ovunque con i valori normali della gravità in modulo e direzione allora l'ellissoide rappresenterebbe, anche fisicamente, una superficie equipotenziale. Poichè ciò non avviene deve esistere una superficie equipotenziale fisica della gravità ridotta, che Gauss e Bessel chiamarono 'superficie matematica della terra' e alla quale venne in seguito (Listing, 1873) dato il nome di geoide.

La forma del geoide non viene calcolata direttamente, ma se ne calcolano le differenze rispetto all'ellissoide di riferimento. Gli scostamenti che il geoide manifesta rispetto all'ellissoide sono dette onde geoidiche. Se l’acqua degli oceani potesse comunicare attraverso i continenti essa si disporrebbe secondo la superficie del geoide, dandocene una rappresentazione concreta (essendo un fluido l’acqua presenta neccessariamente una superficie equipotenziale).
I procedimenti utilizzati per la determinazione della forma del geoide sono essenzialmente due: il primo (Villarceau - 1873) utilizza le deviazioni della verticale, il secondo (Stokes - 1849) si avvale della determinazione delle anomalie gravimetriche. In entrambi i casi si eseguono confronti tra il vettore (gravità normale) ed il vettore g. Nel primo caso si valutano le differenze nella direzione, nel secondo le differenze in modulo.

 

Deviazioni della verticale

Si definisce deviazione della verticale l'angolo che la verticale forma in un punto con la normale all'ellissoide (verticale teorica). Il metodo richiede che venga determinata la verticale di un punto A e le sue coordinate astronomiche con grande precisione. Si ipotizza poi che in tale punto (punto di emanazione o punto entrale) la verticale (normale al geoide) coincida con la verticale all'ellissoide. Tramite triangolazione si passa da A ad un punto B di cui si calcolano le coordinate in funzione di A. Si misurano infine le coordinate astronomiche (geografiche) di B. Le differenze e  tra coordinate ellissoidiche (calcolate) ed astronomiche (misurate) permettono di risalire all'angolo  che la normale all'ellissoide forma con la verticale fisica (deviazione della verticale). Con opportuni procedimenti di calcolo è poi possibile trasformare tali misure in un dislivello h tra la superficie del geoide e dell'ellissoide. Il procedimento della deviazione della verticale, fondandosi sulle triangolazioni, non può essere esteso alle regioni oceaniche.

 

 

Anomalie gravimetriche

Il metodo che utilizza le anomalie gravimetriche è di applicazione più semplice e non presenta le limitazioni del precedente. Esso consiste nel calcolare la differenza tra i valori di gravità misurata ed opportunamente ridotta all'ellissoide (g), con i valori di gravità normale ().
g = g -
Le differenze trovate g vengono dette anomalie gravimetriche e permettono di risalire agli scostamenti tra ellissoide e geoide, attraverso la relazione di Stokes. Le onde geoidiche presentano rispetto all'ellissoide un'ampiezza massima dell'ordine di 100 m.


 

Moti della terra

 

 Moto di rotazione

La terra ruota attorno al proprio asse in circa 24 ore con un movimento antiorario se osservato dal polo Nord Celeste (proiezione lungo l'asse terrestre del polo Nord terrestre sulla volta celeste). Il movimento avviene cioè da W verso E.

 

Prove del moto di rotazione

Oggi possiamo facilmente verificare direttamente tale rotazione attraverso l'osservazione da un satellite in orbita. In passato sono stati invece effettuati esperimenti per dimostrare indirettamente l'esistenza di tale moto. I più famosi si devono a G.B. Guglielmini (1691) e J.B. Foucault (1851).

Esperienza di Guglielmini

Lasciando ripetutamente cadere un grave dalle torri di Bologna Guglielmini verificò che esso non cadeva lungo la verticale individuata dal filo a piombo, ma sistematicamente spostato verso Est. Se individuiamo con A il punto di partenza del grave in cima alla torre e con B il punto a terra che si trova sulla perpendicolare di A, è facile verificare che se la terra ruota A deve muoversi ad una velocità lineare maggiore di B. Trovandosi infatti ad una maggior distanza dall’asse di rotazione terrestre (DA > DB) la velocità lineare di A (VA = w DA) è maggiore della velocità lineare di B (VB = w DB). In altre parole quando la terra ha effettuato in 24 ore una rotazione completa A deve aver percorso una circonferenza maggiore di B nello stesso tempo (24 ore). Per il principio di inerzia il grave lasciato cadere da A deve conservare anche mentre cade la velocità iniziale che caratterizzava la cima della torre e giungendo a terra si troverà un po' più avanti (nella direzione del moto di rotazione terrestre) di B che ruota più lentamente. Poichè il corpo cade sempre spostato verso Est rispetto alla perpendicolare ciò dimostra che la direzione di rotazione della terra è da Ovest verso Est.

Esperienza di Foucault

Il piano di oscillazione di un pendolo ha la caratteristica di mantenere invariato il suo piano di oscillazione rispetto all'universo (stelle fisse).


Foucault appese un pendolo alla cupola del Pantheon a Parigi e lo fece oscillare in modo che la sua punta tracciasse un solco sulla sabbia disposta sul pavimento dell'edificio. Con il passare del tempo il piano di oscillazione ruotava . Non potendo trattarsi di una effettiva rotazione del piano di oscillazione del pendolo, l'unica spiegazione possibile rimaneva una rotazione della terra intera e quindi del pavimento sul quale il pendolo stava lasciando le sue tracce.
Se l'esperimento venisse condotto ai poli il piano di oscillazione eseguirebbe una apparente rotazione completa di 360° in 24 ore. All'equatore non si avrebbe alcuna rotazione, mentre a latitudini intermedie in 24 ore la rotazione sarebbe minore di 360°, tanto minore quanto minore è la latitudine.
Se la latitudine è pari a , il piano di oscillazione del pendolo compie in 24 ore una rotazione pari a 360° sen , con una velocità angolare di 15 sen gradi all'ora. Per compiere quindi una rotazione completa (giorno pendolare) di 360° impiega

 

 

Conseguenze del moto di rotazione terrestre

 

Alternarsi del dì e della notte

La rotazione della terra espone evidentemente la sua superficie ad un continuo cambiamento di condizioni di illuminazione rispetto alla luce proveniente dal sole. Poichè la terra ruota da Ovest verso Est, il sole sembra sorgere ad Est, effettuare un movimento apparente di salita lungo un arco di circonferenza sulla volta celeste, per poi ridiscendere e tramontare ad Ovest. Quando il sole raggiunge il punto più alto della sua traiettoria apparente si dice che si trova in culminazione (mezzogiorno solare). Il sole è in culminazione su di un punto della superficie terrestre quando sta transitando esattamente sopra il meridiano passante per il luogo.
Il sole è sufficientemente distante dalla terra da poter considerare i suoi raggi paralleli tra loro. In tal modo la terra risulta costantemente divisa in due parti uguali, una illuminata ed una oscura, da un cerchio massimo detto circolo di illuminazione. In realtà, a differenza della luna, dove la mancanza di atmosfera produce una netta separazione tra ombra e luce, sulla terra il circolo di illuminazione non è netto. I fenomeni di rifrazione e di diffusione della luce solare prodotti dalla presenza dell'atmosfera terrestre, producono una zona di penombra, detta crepuscolo. In altre parole i raggi solari che in assenza di atmosfera sfiorerebbero solamente la superficie terrestre senza colpirla, vengono deviati e vanno ad illuminare parzialmente una piccola porzione della zona in ombra, producendo l'illuminazione tipica dell'alba e del tramonto.

 

Le forze d’inerzia: forza centrifuga e forza di Coriolis

Un osservatore solidale con un sistema in moto accelerato, qual è appunto un sistema in rotazione, non verifica il principio di inerzia, nel senso che sperimenta fenomeni in disaccordo con esso. I sistemi in moto accelerato sono perciò detti sistemi non inerziali. In essi, corpi apparentemente non soggetti a forze, manifestano accelerazioni.
In realtà si può dimostrare che la comparsa di tali accelerazioni è legata al particolare sistema di riferimento considerato ed esse non esisterebbero se il sistema fosse fermo o si muovesse di moto rettilineo uniforme. Paradossalmente in un sistema accelerato l'inerzia di un corpo si manifesta come una accelerazione apparente. Per questo motivo tali accelerazioni apparenti vengono attribuite a forze fittizie dette forze d'inerzia.  Le forze d’inerzia, come le accelerazioni ad esse correlate, sono grandezze vettoriali.

 

Generalità sui corpi in rotazione (Approfondimento)
Dato un corpo rigido in rotazione attorno ad un asse, tale che, dopo un intervallo di tempo t esso abbia ruotato di un angolo , si definisce velocità angolare istantanea il limite per t 0 del rapporto tra la variazione dell'angolo di rotazione (espresso in radianti) e l'intervallo di tempo t (derivata dello spostamento angolare rispetto al tempo)



Si conviene inoltre di associare a tale grandezza scalare un vettore  del punto P come il prodotto vettoriale

dove a è l'angolo (convesso, minore di 180°) compreso tra i due vettori, cosicché r sin a è la proiezione di r sulla retta perpendicolare che congiunge il punto P all'asse di rotazione e rappresenta dunque la distanza di P dall'asse.

 

Nel caso della terra è facile verificare che, utilizzando il raggio terrestre, la velocità lineare di un punto a latitudine j è pari a

Si rammenti che il prodotto vettoriale ).

 

Forza centrifuga e schiacciamento polare

La più comune forza d'inerzia è la forza centrifuga che si manifesta su corpi ancorati ad un sistema in rotazione. Un osservatore solidale con un riferimento rotante (una giostra ad esempio) si sente spinto verso l'esterno in direzione normale all'asse di rotazione. Tale sensazione è un effetto dell'inerzia che tenderebbe a far muovere l'osservatore di moto rettilineo uniforme rispetto al sistema esterno fisso, lungo la direzione tangente al suo moto rotatorio.
L’effetto più evidente della forza centrifuga è lo schiacciamento delle regioni polari ed il relativo rigonfiamento equatoriale. Il fenomeno si produce infatti per la maggior forza centrifuga cui sono sottoposte le regioni equatoriali rispetto a quelle polari, in virtù di una maggior distanza delle prime dall'asse di rotazione. Si può dimostrare che tale forza è proporzionale ad una accelerazione (accelerazione centrifuga) che vale

Con v velocità lineare di rotazione del punto. E' facile verificare che l’accelerazione centrifuga è sempre diretta in senso radiale.

Forza di Coriolis e legge di Ferrel

Nel caso il corpo possieda una velocità propria vp rispetto al sistema in rotazione, oltre alla forza centrifuga, compare una seconda forza fittizia, detta forza di Coriolis(1835).
Anche in tal caso si può dimostrare che tale forza è proporzionale ad una accelerazione (accelerazione di Coriolis) che vale

Tale forza fittizia costringe il corpo in movimento a deviare rispetto alla sua direzione iniziale. Gli effetti di tali deviazioni sono particolarmente evidenti per corpi debolmente vincolati alla superficie terrestre, come velivoli.
Le deviazioni prodotte dalla forza di Coriolis sono descritte dalla legge di Ferrel. La  legge di Ferrel (1860 circa) afferma che un corpo in movimento sulla superficie terrestre, subisce una deviazione rispetto alla sua direzione iniziale, verso destra nell'emisfero boreale e verso sinistra nell'emisfero australe. La legge di Ferrel governa il movimento delle masse d'aria (venti) e delle masse d'acqua (correnti marine) costringendole a ruotare in modo caratteristico nei due emisferi.
Per comprendere la legge di Ferrel è necessario aver chiari i seguenti concetti:

  • La velocità lineare di rotazione dei diversi punti della superficie terrestre non è costante. I punti più rapidi sono quelli che appartengono all'equatore (essendo quelli più distanti dall'asse di rotazione; V = w D). Man mano che procediamo verso i poli incontriamo paralleli di raggio minore, i cui punti, essendo più vicini all'asse di rotazione, sono sempre più lenti.
  • Quando un oggetto si trova su di un punto della superficie terrestre ruota assieme ad essa con la stessa velocità. Nel momento in cui l'oggetto abbandona la superficie terrestre continua per inerzia a mantenere la velocità di rotazione del punto dal quale era partito.

                                       
Immaginiamo ora un aereo che si alzi in volo da un punto A sull'equatore e che proceda lungo un meridiano verso un punto B posto più a Nord. L'aereo si sposta verso punti della superficie terrestre che stanno ruotando verso Est più lentamente di quanto per inerzia non stia facendo lui (VA > VB) . In tal modo L'aereo si trova a precedere in direzione Est i punti della superficie terrestre che sta sorvolando. Ciò equivale ad una deviazione verso destra del velivolo.
Allo stesso modo se l'aereo da A si alza in volo verso un punto C posto sullo stesso meridiano ma in direzione Sud nell'emisfero australe, esso si troverà ad essere più veloce dei punti che sorvola (VA > VC), precedendoli sempre in direzione Est. Ma in questo caso ciò equivale ad una deviazione verso sinistra del velivolo.
Se ora immaginiamo che il velivolo parta da B o da C e si diriga verso il punto A sull'equatore, esso parte da punti aventi una velocità di rotazione verso Est minore del punto di arrivo. Il velivolo trovandosi così a sorvolare punti della superficie terrestre via via più rapidi si trova in ritardo rispetto al moto di rotazione terrestre, spostato cioè in entrambi i casi verso Ovest. Ciò equivale ad una deviazione verso destra nell'emisfero boreale e verso sinistra nell'emisfero australe.
In realtà la forza di Coriolis produce deviazioni laterali solo quando il movimento avviene lungo un meridiano. Si può infatti dimostrare che negli altri casi compaiono anche delle deviazioni verticali (verso l’alto o verso il basso). In particolare se il corpo si muove lungo l’equatore la forza di Coriolis si manifesta unicamente in direzione verticale.

 

 

                                         
La forza di Coriolis in dettaglio (Approfondimento)
Per una trattazione più dettagliata e precisa degli effetti della forza di Coriolis è necessario determinare caso per caso la direzione del vettore accelerazione con le regole del prodotto vettoriale.
Possiamo in generale affermare che tale forza si manifesta su tutti i corpi in movimento rispetto alla superficie terrestre, con l'eccezione dei casi in cui i vettori  hanno la stessa direzione (in caso di parallelismo l'angolo compreso tra i vettori è nullo ed essendo sin 0 = 0, anche il prodotto vettoriale si annulla). Casi del genere si hanno quando un corpo si muove lungo la verticale in corrispondenza dei poli (ad esempio un grave che cade sopra un polo) o quando un corpo parte dall'equatore con direzione tangente al meridiano. Quando un corpo si muove rispetto alla superficie terrestre possiamo distinguere due casi:
a) movimento tangenziale (parallelo alla superficie)
b) movimento radiale (perpendicolare alla superficie)

 

 

1) Movimento tangenziale
Nel caso di un movimento tangenziale è facile verificare che l'angolo a tra i vettori  coincide con l'angolo j di latitudine del corpo. L'accelerazione di Coriolis presenta in tal caso modulo pari a

 

 

 



Per la regola del prodotto vettoriale essa è sempre perpendicolare al piano individuato dai due vettori . Consideriamo ora il caso generale in cui la direzione del vettore velocità formi un angolo qualsiasi con il meridiano passante per il luogo. Possiamo allora considerare le componenti della velocità lungo il meridiano (v cos) e lungo il parallelo (v sin) La componente lungo il meridiano produce solo una deviazione laterale, mentre la componente lungo il parallelo produce sia una deviazione laterale che una deviazione verticale. Per rendercene conto rappresentiamo il moto di un corpo che si muova tangenzialmente ad un parallelo che non sia l'equatore, in direzione est. Come si può osservare l’accelerazione di Coriolis risulta in questo caso perpendicolare all'asse di rotazione. E' dunque possibile scomporre il suo effetto sul moto del corpo in una componente tangenziale, che lo devia verso destra, e in una componente verticale che, in questo caso, lo devia verso l'alto.
Naturalmente se il corpo si muove lungo un parallelo in direzione Ovest la componente orizzontale è diretta sempre verso la sua destra (in questo caso verso il polo nord) mentre la componente verticale è diretta verso il basso. La componente verticale è tanto maggiore quanto più la direzione del vettore velocità si scosta dalla direzione del meridiano passante per il luogo e, a parità di inclinazione, diventa via via maggiore scendendo in latitudine. In particolare un corpo che parta dall'equatore con un qualche angolo rispetto al meridiano presenta solo una componente verticale che diventa massima quando il suo moto è tangente all'equatore.
In definitiva un corpo che si muova verso est subisce oltre ad una deviazione laterale anche una deviazione verso l'alto (e pesa quindi meno di un corpo fermo), mentre un corpo che si muova verso ovest subisce anche una deviazione verso il basso (e pesa quindi di più di un corpo fermo).

 

 

2) Movimento radiale
Nel caso di un movimento radiale (caduta di un grave, proiettile lanciato verticalmente) è facile verificare che l'angolo a tra i vettori  coincide con la colatitudine, cioè con l'angolo complementare all'angolo di latitudine. Se dunque  =  90 - , l'accelerazione di Coriolis presenta in tal caso modulo pari a

E' semplice verificare che, per la regola del prodotto vettoriale, l'accelerazione di Coriolis è in questo caso sempre tangente al parallelo passante per il luogo e diretta verso est.  Si noti come il parallelo passante per il luogo non è un cerchio massimo e la sua direzione non è quella est-ovest, ma  è deviata verso nord.

 

Durata del moto di rotazione: il giorno

Il tempo impiegato dalla terra per compiere una rotazione intorno al proprio asse è detto giorno. La durata del giorno risulta diversa se si prende come punto di riferimento esterno per misurare la rotazione una stella o il sole. Essendo molto distante, una stella rappresenta un buon punto di riferimento, potendo essere considerata ferma rispetto alla terra (stella fissa). Il tempo impiegato affinché una stella fissa ritorni in culminazione su di un dato meridiano misura dunque la durata di un'effettiva rotazione di 360° della terra intorno al proprio asse. Il giorno così misurato è detto giorno sidereo e dura circa 23 ore e 56 minuti (23h 56m 4,0989s = 86.164,0989 s).
In realtà il giorno sidereo può ritenersi costante solo in prima approssimazione e per intervalli di tempo sufficientemente piccoli. La terra sta infatti impercettibilmente rallentando. Le stime più recenti forniscono una variazione della velocità angolare della Terra pari a 4 ore ogni 700 milioni di anni. Si ritiene che il motivo più probabile di tale rallentamento sia da ricercare nell’azione frenante delle maree. La terra starebbe trasferendo momento angolare alla luna, la quale sta aumentando progressivamente la sua distanza al ritmo di 3,7 ± 0,2 m/secolo

Nonostante il giorno sidereo sia una misura relativamente esatta della durata della rotazione terrestre, tutte le attività umane sono regolate sulla posizione del sole e non delle stelle.
Se dunque misuriamo il tempo necessario affinché il sole culmini per due volte consecutive sullo stesso meridiano (intervallo di tempo tra due mezzodì) si ottiene il giorno solare, pari a circa 24 ore.


Il sole non si può però considerare fisso rispetto alla terra, poiché mentre la terra compie una rotazione intorno al proprio asse, essa si sposta contemporaneamente sulla sua orbita di un tratto di circa 1 grado rispetto al sole. (la terra impiega infatti circa 365 giorni a compiere una rivoluzione di 360° intorno al sole con una velocità angolare di circa 1° al giorno. Più precisamente impiega un anno sidereo, pari a  31.558.150 secondi, a compiere una rivoluzione intorno al sole rispetto alle stelle fisse).
Una volta che la terra ha dunque compiuto, dopo 23 ore e 56 minuti, una rotazione completa attorno al suo asse, non trova il sole nuovamente in culminazione, essendosi spostata in senso antiorario rispetto ad esso di circa un grado. Per ritrovare nuovamente il sole in culminazione la terra deve dunque ruotare ancora di un angolo pari al suo spostamento rispetto al sole, compiendo una rotazione complessiva di 361°.
Poichè la terra impiega circa 24 ore per compiere una rotazione di 360° intorno al suo asse, la sua velocità angolare di rotazione sarà di 360°/24h pari 15 gradi all'ora. Per coprire un grado impiegherà quindi un quindicesimo di ora pari a 4 minuti circa.
In realtà il giorno solare non ha sempre la stessa durata costante di 24 ore. Infatti in perielio la terra si sposta più velocemente intorno al sole e quindi in 24 ore si sposta rispetto al sole di un tratto leggermente superiore ad 1°. La velocità di rotazione terrestre è invece costante e per compiere un po' più di 1° di rotazione al fine di riavere il sole in culminazione impiegherà un po' più di 4 minuti. Il giorno solare in perielio è un po' più lungo di 24 ore. Per ragioni opposte il giorno solare in afelio raggiunge la sua durata minima, inferiore alle 24 ore. Il valore di 24 ore che noi utilizziamo rappresenta il giorno solare medio media dei 365 giorni solari.  L'ora rappresenta convenzionalmente 1/24 del giorno solare medio, il minuto 1/60 dell'ora ed il secondo 1/60 del minuto.


 

moto di rivoluzione

La terra possiede un moto di rivoluzione intorno al sole con movimento antiorario per un osservatore posto al polo nord celeste, che compie in circa 365 giorni e 6 ore. Il piano individuato dall'orbita terrestre è detto eclittica.  L'asse di rotazione terrestre è inclinato di 66° 33' rispetto all'eclittica e di 23° e 27' (il valore esatto è 23° 26’ 21,4”) rispetto alla perpendicolare all'eclittica.
Durante il suo moto di rivoluzione intorno al sole l'asse terrestre può essere considerato, in prima approssimazione, fermo o, per meglio dire, esso si muove intorno al sole mantenendo inalterata la sua orientazione rispetto alle stelle fisse (si usa dire che durante il moto di rivoluzione l’asse terrestre rimane sempre parallelo a se stesso).

 

Prove del moto di rivoluzione

 

Parallasse annua

Come abbiamo già visto, le stelle più vicine alla terra sembrano oscillare rispetto a quelle più distanti (considerate fisse) a causa della diversa posizione di osservazione che la terra assume durante il suo moto di rivoluzione. L’angolo di oscillazione è tanto minore quanto più distanti sono gli astri osservati.

Diversa durata del giorno solare

Abbiamo già visto come il giorno solare abbia una lunghezza diversa come conseguenza della differente velocità di rivoluzione della terra lungo la sua orbita. Tale fenomeno può dunque essere portato come prova del moto di rivoluzione terrestre.

Aberrazione delle stelle fisse

Fenomeno scoperto da J. Bradley nel 1728 per il quale tutte le stelle, indipendentemente dalla loro distanza, vengono osservate in una posizione diversa da quella effettiva a causa del moto di rivoluzione della terra. Il fenomeno può essere in prima approssimazione spiegato (come fece lo stesso Bradley) nell’ambito della meccanica classica, supponendo che la velocità della luce si componga vettorialmente con la velocità della terra (la relatività speciale ha in realtà dimostrato che la velocità della luce è una costante di natura e non può comporsi con altri moti relativi). Così facendo si trova che tutte le stelle oscillano intorno alla loro posizione vera di ± 20,5 secondi di grado, quantità definita angolo di aberrazione.

Angolo di aberrazione (Approfondimento)
Supponiamo che una stella si trovi in S e che la linea visuale che congiunge  S alla Terra in T formi un angolo q con il vettore v, velocità orbitale della terra.  Il risultato è ovviamente il medesimo se pensiamo la terra ferma e la stella soggetta ad un vettore controverso -v. Tale vettore può essere scomposto in una componente radiale (v cosq), che non modifica la posizione della stella, e in una componente trasversale (v sinq) che modifica le coordinate celesti della stella. Infatti tale componente trasversale, componendosi con il vettore velocità della luce c, produce un vettore risultante c’. In tal modo la luce della stella sembra provenire da un direzione diversa e la sua posizione apparente sulla sfera celeste viene ad essere S’. con una variazione di un angolo a delle coordinate celesti effettive.
L’angolo a che la direzione vera forma con la direzione apparente, detto angolo di aberrazione, è tale che

Prendiamo ora in considerazione una stella la cui direzione formi un angolo j con il piano dell’eclittica (j = latitudine eclitticale della stella). Possiamo facilmente osservare come la componente trasversale assuma i valori massimi in A e B, dove q = 90° (± v sin90° = ± v) ed i valori minimi in C e D, dove q = j  (± v sinj).
Se ne deduce che ogni stella presenta sempre lo stesso angolo massimo di aberrazione (per q = 90°), detto costante di aberrazione, che vale

Poiché la velocità media di rivoluzione della terra è v = 29,785 km/s e la velocità della luce è c = 299.792,458 km/s, la costante di aberrazione vale a = 20,5” (l’IAU Unione Astrofisica Internazionale fornisce per l’anno 2000 il valore a = 20,495520” ± 1 10-6”).  La velocità media di rivoluzione si può calcolare assumendo l’orbita terrestre come circolare, con raggio pari alla distanza media Terra-Sole (R = 1 UA, pari al semiasse maggiore a = 1,4959787 108 km) ed il periodo di rivoluzione P pari ad 1 anno sidereo (31.558.150 s)

oppure utilizzando la 3^ legge di Keplero  ed esprimendo il periodo in funzione della velocità media (relazione precedente) si ottiene

In definitiva ogni stella presenta un’oscillazione annua massima di circa 41” (± 20,5”) intorno alla sua posizione vera (il vettore v si orienta infatti in senso opposto ogni 6 mesi) ed una oscillazione minima, orientata perpendicolarmente a quella massima, il cui valore dipende ovviamente dalla latitudine eclitticale j. Se dunque a = 20,5” è la costante di aberrazione e j è la latitudine eclitticale, ogni stella descrive nel periodo di un anno un’ellisse (ellisse di aberrazione) di semiassi a e a sinj. Per le stelle che giacciono sul piano dell’eclittica l’ellisse degenera in un segmento di ampiezza 2a, mentre per le stelle perpendicolari al piano dell’eclittica l’ellisse diventa una circonferenza di raggio a.

 

Conseguenze del moto di rivoluzione: alternarsi delle stagioni

Il fatto che sui due emisferi terrestri (boreale e australe) si alternino diverse stagioni meteorologiche è una delle conseguenze principali del moto di rivoluzione della terra. In realtà il moto di rivoluzione non è l'unico responsabile di tale fenomeno. Ad esso contribuisce anche  la particolare inclinazione dell'asse terrestre ed il fatto che l'asse mantiene inalterata la sua orientazione rispetto alle stelle fisse.
Se infatti l'asse fosse perpendicolare all'eclittica e non inclinato i due emisferi verrebbero raggiunti per tutti i 365 giorni dell'anno dalla stessa quantità di radiazione solare e sarebbero caratterizzati da un'unica stagione uniforme.
Il moto di rivoluzione fa si che l'asse terrestre formi con la direzione dei raggi solari angoli diversi man mano che la terra procede lungo il suo cammino intorno al sole. In tal modo i raggi solari giungono con inclinazione diversa sui due emisferi nei vari periodi dell'anno creando le condizioni per il prodursi di diverse condizioni climatiche. Per descrivere il fenomeno con maggior dettaglio possiamo individuare 4 punti fondamentali dell'orbita in relazione agli angoli formati dall'asse con la direzione dei raggi solari.

 

  • punto in cui è minima l'inclinazione dell'asse rispetto ai raggi solari (66° 33'). L’emisfero boreale e più esposto alla radiazione solare.
  • punto in cui è massima l'inclinazione dell'asse rispetto ai raggi solari (113° 27' = 90° + 23° 27'). L'emisfero australe è più esposto alla radiazione solare.
  • e D) punti intermedi in cui i raggi solari risultano a 90° rispetto all'asse terrestre. I due emisferi risultano egualmente esposti ai raggi solari.

       
Esaminiamo ora in dettaglio le condizioni di illuminazione dei due emisferi nei quattro punti precedentemente individuati.

A) SOLSTIZIO D'ESTATE
La terra raggiunge tale punto poco prima di giungere in afelio. L'afelio viene raggiunto il 4 luglio, mentre il punto di minima inclinazione dell'asse rispetto ai raggi solari viene raggiunto il 21 giugno, detto solstizio d'estate.

Durante il solstizio d'estate i raggi solari risultano perpendicolari (sono allo zenit), a mezzogiorno, sul parallelo di 23° e 27' di latitudine nord. Tale parallelo è detto tropico del Cancro. I raggi solari risultano inoltre tangenti ai due paralleli che si trovano a 66° e 33' di latitudine Nord e Sud, detti rispettivamente Circolo polare artico e antartico.
Durante il solstizio d'estate tutti i punti a Nord del circolo polare artico (calotta polare artica) rimangono illuminati dal sole per 24 ore, mentre tutti i punti a Sud del circolo polare antartico (calotta polare antartica) rimangono al buio per 24 ore.
Il circolo di illuminazione individua un piano inclinato di 23° e 27' rispetto all'asse terrestre e taglia in parti diseguali tutti i paralleli che vanno dall'equatore ai due circoli tranne l'equatore, che viene diviso in due parti uguali. Nell'emisfero boreale sarà maggiore il tratto di parallelo illuminato rispetto a quello oscuro, mentre il contrario avverrà nell'emisfero australe. Ciò comporta che la durata del dì sarà maggiore rispetto a quella della notte nell'emisfero boreale, minore in quello australe, eguale all'equatore.

Poichè i paralleli sono tagliati dal circolo di illuminazione in parti tanto più disuguali quanto più ci avviciniamo ai circoli polari, la differenza di durata tra il giorno e la notte si farà tanto più accentuata quanto più ci sposteremo verso i poli.


In tale situazione si verifica un periodo caldo nell'emisfero boreale (estate boreale) ed un periodo freddo nell'emisfero australe (inverno australe).
Riassumendo l'estate è dunque legata al fatto che il polo nord in questo periodo è inclinato verso il sole ed i raggi solari risultano perciò maggiormente concentrati nell'emisfero boreale (a mezzogiorno il sole risulta più alto sull'orizzonte rispetto a quanto accade d'inverno). Inoltre quanto più un raggio solare giunge inclinato sulla superficie terrestre tanto minore sarà la quantità di energia ceduta per unità di superficie, sia perché si diluisce su di una superficie maggiore, sia perché deve attraversare un tratto più spesso di atmosfera.
Inoltre l'emisfero boreale risulta riscaldato dal sole per un numero di ore più elevato rispetto all'emisfero australe (il dì è più lungo).

 

B) SOLSTIZIO D'INVERNO
Quando dopo circa 6 mesi la terra si trova in prossimità del perielio (che raggiunge il 3 gennaio), l'asse terrestre, essendosi mantenuto parallelo si trova avere la massima inclinazione (113° e 27') rispetto ai raggi solari. E' il polo sud questa volta a puntare verso il sole. La terra si trova in solstizio d'inverno (22 dicembre).

I raggi del sole sono perpendicolari al tropico del Capricorno (23°27' di latitudine Sud) e nuovamente tangenti ai circoli polari. Le condizioni di illuminazione risultano essere perfettamente capovolte rispetto al solstizio d'estate. Nell'emisfero Nord si produce una stagione fredda (inverno boreale), mentre nell'emisfero Sud una calda (estate australe).Poichè l'estate boreale cade in afelio essa è leggermente più lunga e meno calda dell'estate australe (la terra è infatti più distante dal sole e si muove più lentamente).L'inverno boreale, cadendo invece in prossimità del perielio , è leggermente più tiepido e più corto di quello australe.Il fatto che l'inverno e l'estate cadano attualmente in prossimità dell'afelio e del perielio è assolutamente casuale. Le posizioni dei solstizi ( e degli equinozi) sono infatti destinate a mutare gradualmente e con regolarità rispetto all'orbita terrestre. Il solstizio d’estate coincideva con l’afelio intorno al  1250 d.C. (coincidenza apsidi - solstizi), mentre gli equinozi verranno a coincidere con gli apsidi (equinozio di primavera in perielio) verso il 6500 d.C.

C - D  EQUINOZI
Gli equinozi occupano una posizione intermedia tra i punti solstiziali, tale per cui i raggi solari risultano perpendicolari all'asse terrestre e giungono quindi (a mezzogiorno) perpendicolarmente all'equatore. Il calore solare viene ad essere quindi egualmente distribuito sui due emisferi. Il circolo di illuminazione coincide con i meridiani, passa per i poli e taglia tutti i paralleli in due parti uguali. Il dì dura 12 ore, come la notte. L’equinozio di primavera viene raggiunto il 21 marzo (19/21), mentre L’equinozio di autunno il 23 settembre (22/24). La linea degli equinozi risulta pertanto perpendicolare all’asse terrestre.
Naturalmente mentre la terra si muove lungo la sua orbita anche l'inclinazione dei raggi solari rispetto al suo asse e quindi alla sua superficie si modifica con regolarità. Il sole che a mezzogiorno si trova allo Zenit al tropico del Cancro durante il solstizio d'estate, con il passare dei giorni si troverà allo Zenit (sempre a mezzogiorno) su paralleli di latitudine via via inferiore, fino a raggiungere l'equatore durante l'equinozio d'autunno, per poi scendere fino al tropico del Capricorno sul quale giungerà allo Zenit durante il solstizio d'inverno.
Qui sembrerà fermarsi per riprendere il suo moto in senso contrario. Il fatto che ai due tropici il sole dia l'impressione di fermarsi per poi tornare indietro ha dato il nome ai solstizi (sol stare). Il nome degli equinozi deriva invece dal fatto che quando il sole si trova allo zenit all'equatore il dì e la notte hanno la stessa durata (aequus nox).

Risulta evidente che il sole non potrà mai trovarsi allo zenit al di fuori delle latitudini comprese tra i due tropici. Ciò dipende dall'inclinazione attuale dell'asse terrestre. Se l'asse fosse ad esempio inclinato di 30° rispetto alla perpendicolare all'eclittica, allora anche i tropici verrebbero a trovarsi a 30° di latitudine nord e sud, mentre i circoli si abbasserebbero a 60° N e S.

I due tropici ed i due circoli polari suddividono la terra in cinque zone dette zone astronomiche o climatiche. La zona compresa tra i due tropici ( l'unica zona della terra dove il sole giunge allo zenit a mezzogiorno per due volte all'anno) è detta zona torrida. Tra i tropici ed i circoli vi sono le due zone temperate (australe e boreale). Al di sopra dei circoli vi sono le due calotte: calotta polare artica e antartica.

 

 Moto doppio conico dell'asse e precessione degli equinozi

Come si è visto, durante il moto di rivoluzione, l'asse di rotazione tende a mantenere inalterata la sua orientazione. Ciò è dovuto al fatto che la terra gira attorno al proprio asse e, come tutti i giroscopi (trottole), si oppone ad ogni sollecitazione che tenda a modificarne l'assetto di rotazione (il momento angolare è una quantità vettoriale e si mantiene costante in modulo, direzione e verso). La luna, il sole ed i pianeti esercitano però sulla terra un'attrazione gravitazionale che risulta maggiore sul rigonfiamento equatoriale, dove è presente un eccesso di massa, rispetto ai poli. Tale attrazione tenderebbe a raddrizzare l'asse portandolo a 90° rispetto al piano dell'eclittica. Il risultato di tali forze su di un sistema rotante, qual è la terra, è quello  di produrre una rotazione dell'asse il quale, facendo perno sul centro della terra, descrive due coni aventi vertice al centro della terra.


Poiché l’equatore celeste è perpendicolare all’asse terrestre, anch’esso esegue il medesimo movimento, cambiando lentamente l’orientazione rispetto alle stelle fisse. Anche la linea degli equinozi, che essendo l’intersezione dell’equatore celeste con il piano dell’eclittica risulta essere sempre perpendicolare all’asse terrestre, ruota rispetto alle stelle fisse con la stessa velocità dell’asse terrestre. Tale rotazione oraria della linea degli equinozi è nota come precessione degli equinozi. La precessione si completa in un periodo di circa 26.000 anni, detto anno platonico.

 

Conseguenze della precessione

  • I punti equinoziali stanno lentamente scivolando in senso orario sull’eclittica attraverso le costellazioni zodiacali. Tenendo conto che una costellazione dello zodiaco ha un’ampiezza di 30°, gli equinozi (ed i solstizi) percorrono ciascuna costellazione in 1/12 di anno platonico, pari  a circa 2.150 anni. Se l’equinozio di primavera cadeva 2000 anni fa nella costellazione dell’Ariete, oggi cade nei Pesci. Ma in generale tutti i segni zodiacali sono slittati rispetto alle posizioni che avevano quando è nata l’astrologia (senza che gli astrologi abbiano mostrato di accorgersene).
  • Tra 13.000 anni circa l’asse terrestre, avrà compiuto mezzo giro e non punterà più verso la stella polare, ma verso Vega nella costellazione della Lira, che dista ben 47° dalla polare.
  • I punti equinoziali (e quindi le stagioni) cambiano la loro posizione rispetto all’orbita terrestre. Attualmente gli equinozi si trovano circa a metà strada tra afelio e perielio (apsidi), ma lentamente li raggiungeranno. Questo terzo punto verrà ripreso in seguito, dopo che avremo discusso dei movimenti dell’eclittica rispetto alle stelle fisse (moti millenari).

Durata del periodo di rivoluzione: l'anno

Viene definito anno il tempo necessario affinché la terra completi il suo moto di rivoluzione intorno al sole. Anche in questo caso la durata dell'anno dipende dal punto di riferimento considerato.
Rispetto ad una stella fissa noi misuriamo l'anno sidereo. Esso misura una effettiva rivoluzione di 360° intorno al sole ed ha una durata di 365 giorni 6 ore e 9 minuti circa (365d 6h 9m 10s  = 365,25636 giorni solari medi = 31.558.150 s).
Come al solito noi usiamo però misurare il tempo rispetto al sole. Il tempo necessario affinché la terra riassuma la stessa posizione rispetto al sole è detto anno solare o tropico. Esso misura in pratica l'intervallo di tempo tra due equinozi o due solstizi dello stesso segno (ad esempio il tempo necessario affinché la terra ritorni all'equinozio di primavera).
A causa del fenomeno della precessione l'anno tropico risulta circa 20 (20m 25s) minuti più breve dell'anno sidereo e pari a circa 365 giorni 5 ore e 49 minuti (365d 5h 48m 45s  = 365,24219 giorni solari medi = 31.556.925 s).

 

 

 

 

 

 

 

 

moti minori millenari

Come è stato già anticipato le interferenze gravitazionali degli altri pianeti sulla terra producono altri fenomeni, tra i quali ricordiamo:

 

Movimento di rotazione della linea degli apsidi

l’orbita terrestre è un ellisse e le posizioni assunte dagli altri pianeti rispetto ad essa tendono a modificarne sia l'eccentricità che l’orientamento rispetto alle stelle fisse. Come conseguenza delle perturbazioni gravitazionali planetarie essa ruota in senso antiorario, facendo perno sul sole, in circa 111.500 anni.
Se l’orbita rimanesse ferma rispetto alle stelle fisse, un punto equinoziale (o solstiziale) la percorrerebbe completamente in circa 26.000 anni. Ma l’orbita terrestre, e con essa la linea degli apsidi, va incontro alla linea degli equinozi e ne abbrevia in questo modo il periodo di rotazione rispetto all’eclittica a circa 21.000 anni. In altre parole gli equinozi (e naturalmente anche i solstizi) impiegano circa 21.000 anni a percorrere tutta l’orbita (ad esempio da perielio a perielio) e come conseguenza le stagioni sono destinate a manifestarsi in punti via via diversi dell’orbita. Avevamo infatti già avuto modo di dire che l’estate boreale cade oggi in prossimità dell’afelio solo casualmente. Essa sta infatti lentamente scivolando in senso orario sull’orbita, come d’altra parte fanno tutte le stagioni.
In prima approssimazione la linea degli equinozi si sovrappone alla linea degli apsidi ogni 21.000 anni circa e le stagioni si ribaltano ogni 10.500 anni. In altre parole dopo 10.500 anni circa l’asse si trova ad aver compiuto mezzo giro rispetto al sole e le condizioni termiche risultano completamente invertite (l'estate boreale si avrà non più in prossimità dell'afelio ma del perielio). Poichè intorno al  1250 d.C. il solstizio d’estate coincideva con l’afelio (coincidenza apsidi - solstizi) e la linea degli equinozi compie un quarto di giro ogni 5.250 anni circa (21.000/4) gli equinozi verranno a coincidere con gli apsidi (equinozio di primavera in perielio) verso il 6500 d.C.

 

Variazione dell'eccentricità dell'orbita

Attualmente la differenza tra la distanza afelio-sole e la distanza perielio-sole è di circa 5 milioni di chilometri. Tale differenza è una misura dell'eccentricità dell'orbita. Se infatti essa si riducesse a zero l'ellisse si ridurrebbe ad una circonferenza, se aumentasse l'ellisse si farebbe più eccentrica. Tale distanza è destinata a mutare da un minimo di 1 milione di chilometri ad un massimo di 14 milioni di chilometri. Il ciclo (ad esempio dal valore minimo per ritornare al valore minimo) si completa in 92.000 anni.

 

Variazione dell'inclinazione dell'asse

L'asse terrestre varia la sua inclinazione rispetto alla perpendicolare all'eclittica da un minimo di 22° ad un massimo di 24°20' in un periodo di 40.000 anni circa. Naturalmente al variare dell'inclinazione dell'asse deve variare di conseguenza la latitudine di tropici e circoli.

 

Nutazioni

Il movimento doppio conico dell'asse non è regolare, ma si attua con piccole ondulazioni dette nutazioni (Bradley - 1736). Ciascuna nutazione si completa in 18,6 anni ed è dovuta alle perturbazioni gravitazionali prodotte dalla rotazione oraria (retrograda) della linea dei nodi lunari.

La nutazione comporta una modificazione periodica delle coordinate celesti analoga a quella prodotta dall’aberrazione. Anche le date degli equinozi e dei solstizi subiscono delle oscillazioni come conseguenza della nutazione. A volte si fa riferimento ai solstizi e agli equinozi medi, la cui data è più facilmente calcolabile, non essendo influenzata dalla nutazione.

 

moto rispetto al centro galattico

In realtà la terra segue il sole nel suo movimento di rivoluzione intorno al centro galattico con una velocità stimata di circa 250 km/s, per cui la sua orbita assume la forma di una spirale che si avvita intorno al sole.


La Misura del Tempo

 

Il calendario

L'anno tropico non è un multiplo esatto del giorno solare medio e non inizia quindi in alle ore 0 del 1 gennaio, ma alle 5 e 49 minuti del 1 gennaio. Per evitare questo inconveniente è stato introdotto l'anno civile di 365 (o 366) giorni. Naturalmente assieme all'anno civile deve essere introdotto un meccanismo, detto calendario, in grado di recuperare periodicamente le frazioni di giorno non calcolate nell'anno civile, pena il progressivo sfasamento tra anno civile e tempo astronomico.
Uno dei primi calendari utilizzati a questo scopo è il calendario giuliano, introdotto sotto Giulio Cesare nel 45 a.C. Il calendario giuliano prevede un anno civile di 365 giorni ed un recupero delle circa 6 ore non contate ciascun anno, ogni quattro anni con l'introduzione di un anno di 366 giorni. Il giorno in più veniva aggiunto tra il sesto ed il settimo giorno prima di marzo e chiamato bis sextum, da cui bisestile. L’anno giuliano dura quindi mediamente 365,25 giorni solari medi. L'anno tropico non dura però esattamente 365giorni e 6 ore, ma 365 giorni 5 ore e 49 minuti. Il calendario giuliano, recuperando invece 6 ore, contava circa 11 minuti in più all'anno (11m 15s) e ciascun giorno bisestile introdotto portava uno sfasamento di circa 44 minuti rispetto al tempo astronomico.
Verso il 1500 il tempo civile aveva accumulato uno sfasamento di circa 10 giorni rispetto al tempo astronomico. Nel 1582 il calendario venne perciò riformato sotto papa Gregorio XIII. Vennero dapprima soppressi i 10 giorni in più che si erano accumulati (si passò dal 4 ottobre del 1582 al 15 ottobre del 1582) ed il calendario giuliano venne sostituito dal calendario gregoriano,  lo stesso che attualmente utilizziamo.

Poichè si calcola che gli 11 minuti contati in più ogni anno sfasano il calendario giuliano di circa 3 giorni ogni 400 anni, il calendario gregoriano introduce un nuovo meccanismo per eliminare appunto 3 giorni ogni 400 anni. Tale meccanismo prevede che tutti gli anni secolari aventi le prime due cifre divisibili per 4 continuino ad essere bisestili, mentre gli anni secolari con le prime due cifre non divisibili per quattro non siano più bisestili (mentre lo erano nel calendario giuliano.
Così il 1600 fu bisestile, mentre il 1700, il 1800 ed il 1900 videro soppressi il loro giorno bisestile. In tal modo dal 1600 al 1900, in un periodo di 400 anni sono stati soppressi 3 giorni bisestili. Il 2000 sarà nuovamente bisestile. Poiché ogni 400 anni vi sono 303 anni composti di 365 giorni e 97 anni bisestili di 366 giorni, l’anno gregoriano ha una durata di

ed è quindi circa 27 secondi più lungo dell’anno tropico. Poiché il giorno solare medio è formato di 86.400 secondi, il calendario gregoriano produce uno sfasamento rispetto al tempo astronomico di 1 giorno ogni 86.400/27 = 3.200 anni circa.

 

Fusi orari

In una certa località è mezzogiorno quando il sole culmina sul meridiano del luogo, raggiungendo il punto più alto della sua traiettoria apparente. Ora, poiché il moto apparente del sole è da Est ad Ovest, quando il sole è in culminazione su di un punto A della superficie terrestre, non può essere contemporaneamente in culminazione su di un punto B che si trovi su di un altro meridiano rispetto ad A (cioè che abbia una diversa longitudine). In altra parole il sole non può essere ad esempio contemporaneamente in culminazione a Venezia e a Milano. Ne consegue che quando a Venezia è mezzogiorno, a Milano, che si trova più ad ovest, il sole deve ancora giungere in culminazione e mancherà perciò qualche minuto a mezzogiorno. Per evitare l'inconveniente che luoghi diversi (con diversa longitudine) all'interno di uno stesso stato presentino ore differenti, si è convenuto di dividere la superficie terrestre in 24 spicchi aventi dei meridiani come confini ed un'ampiezza longitudinale di 15° l'uno. Tali spicchi sono detti fusi orari e tutte le zone comprese all'interno di uno spicchio hanno convenzionalmente la stessa ora del meridiano passante per il centro del fuso. Ad esempio per l'Italia il meridiano centrale del fuso è quello che passa per Monte Mario nei pressi di Roma. Quando il nostro orologio segna mezzogiorno (ora legale a parte) in realtà è mezzogiorno solare solo sul meridiano centrale. Lì il sole è effettivamente in culminazione, mentre a Venezia, che si trova leggermente più ad est il sole è già stato in culminazione e la sua ora effettiva (solare) è di mezzogiorno e qualche minuto, mentre ad Aosta, per ragioni opposte non è ancora mezzogiorno.
In effetti i confini dei fusi non seguono perfettamente l'andamento dei meridiani, ma vengono opportunamente modificati in modo da seguire i confini politici degli stati. Naturalmente questo non è possibile per stati molto estesi in longitudine come gli Stati Uniti o la Russia, dove si è costretti ad usare più di un fuso. Il primo fuso è convenzionalmente quello in cui il meridiano centrale coincide con il meridiano fondamentale passante per Greenwich. Quando ad esempio il sole è in culminazione si Greenwich in tutto il primo fuso è mezzogiorno, mentre nel secondo fuso ad est di Greenwich sono le 13, nel terzo le 14 e così via.

 

Linea di cambiamento di data

Poniamo ora che a Greenwich siano le 10 del 6 marzo e immaginiamo di muoverci molto velocemente verso Est con un aviogetto. Mentre attraverseremo i fusi verso Est dovremo far avanzare le lancette dell'orologio, spostandole verso le 11, le 12 e così via fino a che, giunti all'antimeridiano di Greenwich (13° fuso) sposteremo le lancette alle 22 del 6 marzo. Proseguendo verso est il viaggiatore raggiungerà il fuso delle 24, il cui meridiano centrale è detto linea di mezzanotte (LM). Attraversandolo il viaggiatore sposterà il suo orologio dalle 24 del 6 marzo alle 1 del 7 marzo. Immaginiamo ora un altro viaggiatore che stia compiendo anch'egli molto velocemente il giro del mondo ma verso Ovest, partendo da Greenwich il 6 marzo ore 10. Mentre attraversa i fusi verso ovest egli dovrà portare indietro le lancette dell'orologio alle 9 di mattina del 6 marzo, alle 8, alle 7 e così via finche, raggiunta la linea di mezzanotte sposterà le lancette dall'una del 6 marzo alle 24 del 5 marzo. Così i due viaggiatori incontrandosi alla linea di mezzanotte provenienti da parti opposte, si troverebbero d'accordo sull'ora ma non sul giorno. Per evitare tale inconveniente il XIII fuso, che contiene l'antimeridiano di Greenwich, viene diviso dal 180° meridiano in due parti aventi stessa ora, ma date diverse. Qualunque sia l'ora sul mezzo spicchio ad ovest dell'antimeridiano, sul mezzo spicchio ad est è la stessa ora del giorno precedente. In definitiva esistono due meridiani in cui le date cambiano in modo opposto: la linea di mezzanotte (la data aumenta verso est) e la linea internazionale di cambiamento di data (LCD, la data diminuisce verso est). In ogni momento la terra è dunque divisa in due zone aventi date diverse (a est della LCD vi è sempre la data inferiore). Naturalmente quando il sole è in culminazione su Greenwich la linea di mezzanotte coincide con la linea di cambiamento di data e tutti i luoghi presentano la stessa data (attraversando contemporaneamente le due linee la data dovrebbe sia aumentare che diminuire e quindi non varia). Per evidenti ragioni di opportunità la LCD passa sempre attraverso l'oceano e nei pochi casi in cui incontrerebbe qualche isola, viene fatta deviare.


 

L’Orientamento

 

Orizzonte e punti cardinali

Orientarsi significa individuare sull'orizzonte i 4 punti cardinali. L'orizzonte è la circonferenza che delimita la porzione visibile all'osservatore della superficie terrestre, separandola dalla volta celeste.
L’orizzonte geometrico dipende dall’altezza h (in metri) dell’osservatore rispetto al suolo. Il raggio dell’orizzonte geometrico (in metri) è approssimativamente pari a .

L’orizzonte sensibile è in realtà leggermente più ampio a causa dei fenomeni di rifrazione della luce che permettono al nostro occhio di ricevere immagini situate anche oltre l’orizzonte geometrico.
L'EST è il punto dell'orizzonte dal quale sembra sorgere il sole nei giorni equinoziali , detto anche oriente o levante. L'OVEST, o occidente o ponente, è il punto dell'orizzonte dove sembra tramontare il sole nei giorni equinoziali. Nei giorni non equinoziali il sole sorge e tramonta leggermente più a Nord durante l'estate boreale e leggermente più a sud durante l'inverno boreale. L'angolo che i raggi del sole formano con il piano equatoriale nei giorni non equinoziali è detto declinazione solare. I valori della declinazione solare per ogni giorno dell'anno (in pratica la latitudine alla quale il sole risulta allo zenit a mezzogiorno) sono riportati negli annuari astronomici. Ponendosi con la destra ad est e la sinistra ad ovest il NORD risulta posto esattamente dinanzi all'osservatore, mentre il SUD si trova alle sue spalle.

 

Orientamento diurno

Per orientarsi si può dunque indicativamente osservare il punto in cui sorge o tramonta il sole. Nell'emisfero boreale è inoltre possibile individuare il sud dalla posizione del sole a mezzodì (naturalmente se ci troviamo tra equatore e tropico del Cancro è necessario che il sole non stia culminando in un punto più a Nord). Per un osservatore posto nell'emisfero australe la posizione del sole in culminazione indica naturalmente il Nord.

 

Orientamento notturno

Di notte ci si può orientare con la stella polare la quale indica il polo Nord celeste con circa 51' di scarto. ( La stella polare è l'ultima stella del timone del piccolo carro, individuabile prolungando l'asse anteriore del grande carro di circa tre volte la sua lunghezza). Nell'emisfero australe è possibile orientarsi individuando la stella s Octantis che indica il Sud con circa 1° di scarto. Essendo però s Octantis poco luminosa si cerca in genere la costellazione Croce del Sud che però dista 30° dal Polo Sud.

 

Declinazione magnetica

Naturalmente ci si può orientare con la bussola, la quale tuttavia non indica il polo Nord geografico, ma il polo Nord magnetico, il quale si trova attualmente a circa 75° N e 100° W in una delle isole Regina Elisabetta (Canada), mentre il polo Sud magnetico si trova a circa 68° S e 140° E circa.
In effetti non si tratta di veri e propri punti, ma di zone di estensione variabile, che mutano la loro posizione con il tempo. Evidentemente solo per un osservatore posto sul meridiano di 100° W (e sul suo antimeridiano) l'ago della bussola indica contemporaneamente il polo nord geografico ed il polo nord magnetico.
In tutti gli altri casi l'ago della bussola punta verso il polo nord magnetico e non verso quello geografico. La direzione individuata dall'ago (che punta verso il Nord magnetico) forma in tal caso con la direzione individuata dal meridiano passante per il luogo (che punta verso il Nord geografico) un angolo detto declinazione magnetica.


La declinazione magnetica può essere occidentale o orientale e varia da luogo a luogo. Conoscendo la declinazione magnetica di una certa località è possibile individuare con esattezza, tramite una bussola, il polo nord geografico.

 

Determinazione delle coordinate geografiche

 

Latitudine di notte

Durante la notte la latitudine è pari all'angolo che la visuale verso la stella polare forma con il piano dell'orizzonte. In altre parole è possibile calcolare la latitudine di un luogo semplicemente misurando l'altezza della stella polare sul piano dell'orizzonte.                                      
Nello schema la latitudine del punto A è rappresentata dall'angolo a. E' facile osservare che i due angoli b sono uguali in quanto corrispondenti, mentre i due angoli a sono uguali in quanto entrambi complementari di angoli corrispondenti (le due rette parallele sono 2 raggi provenienti dalla stella polare, uno passante per il centro della terra, uno passante per il punto A. La retta incidente coincide con il raggio terrestre passante per A).
E' facile convincersi che più ci spostiamo verso nord (maggior latitudine) più la stella polare ci appare alta sul piano dell'orizzonte, mentre più ci si sposta verso l'equatore più la stella si abbassa sul piano dell'orizzonte (al polo Nord (latitudine 90°) la stella si trova allo zenit, a 90°, mentre all'equatore (latitudine 0°) i suoi raggi giacciono sul piano dell'orizzonte.

 

 

 

Latitudine di giorno

Durante le ore diurne, nei giorni equinoziali, la latitudine è pari al complemento a 90° dell'altezza del sole sul piano dell'orizzonte a mezzogiorno. In altre parole una volta misurato durante un giorno equinoziale l'angolo che i raggi solari formano a mezzogiorno con il piano dell'orizzonte è necessario sottrarlo a 90° per ottenere la latitudine del luogo.
Nello schema a rappresenta la latitudine di A, mentre b rappresenta l'altezza del sole sul piano dell'orizzonte. I due angoli a sono uguali perché corrispondenti, mentre i due angoli b sono uguali perché complementari di angoli corrispondenti ( le due rette parallele sono due raggi provenienti dal sole, uno passante per il centro della terra, uno passante per il punto A. La retta incidente coincide con il raggio terrestre passante per A).
Nei giorni non equinoziali è necessario conoscere il valore della declinazione solare del luogo. Il valore dell'angolo di declinazione va aggiunto all'angolo di latitudine precedentemente calcolato in primavera estate, mentre va tolto in autunno inverno. Tale correzione è evidentemente necessaria per riportare il sole in posizione equinoziale.

 

Longitudine

E' possibile calcolare la longitudine possedendo un orologio sincronizzato sull'ora di Greenwich. Ricordando infatti che il sole impiega 1 ora per percorrere 15° di longitudine è possibile tradurre differenze di tempo tra l'ora locale e l'ora di Greenwich in differenze di longitudine.
Ad esempio se il nostro orologio ci informa che a Greenwich sono le 10 e 30 mentre il sole si trova in culminazione sul nostro meridiano, possiamo dedurre che il sole arriverà in culminazione a Greenwich tra un'ora e mezza. Greenwich si troverà quindi ad Ovest del nostro meridiano ad una distanza di 22° 30', distanza che il sole copre appunto in un'ora e mezzo (15° + 7° 30'). La nostra longitudine sarà pertanto 22°30' E. In generale quando l'ora locale è maggiore di quella di Greenwich il luogo si trova ad Est di Greenwich, quando è minore il luogo si trova ad Ovest.

 


La luna

Generalità
La luna possiede una massa pari ad 1/81 circa di quella terrestre (ML = 7,3483 1022 kg) ed una raggio medio di 1738 km. La sua densità è di 3.3 kg/dm3 contro i 5.5 kg/dm3. La forza di gravità è 1/6 di quella terrestre.

 

 

l’aspetto fisico

La superficie lunare presenta grandi distese scure chiamate mari (costituite da estese pianure coperte da una polvere soffice che riflette meno la luce solare, detta regolite). I rilievi lunari visti dalla terra si presentano invece più luminosi e sono costituiti da catene montuose e dai bordi rialzati di crateri (alcuni vulcanici, altri da impatto meteorico). Sulla superficie lunare si notano inoltre dei solchi che possono arrivare a parecchie decine di km di lunghezza e a profondità fino a 500 m. La loro origine è incerta (fessure dovute all'antico raffreddamento ed alla relativa contrazione della crosta; canali scavati dalla lava; fratture (faglie) legate ai movimenti successivi della crosta lunare). Sulla luna è assente sia l'acqua che l'atmosfera, poiché la piccola velocità di fuga caratteristica della luna ha permesso a queste molecole di perdersi nello spazio, vincendo la gravità lunare (probabilmente quando la luna era molto più calda e tali molecole possedevano energie cinetiche piuttosto elevate). L'assenza di acqua ed atmosfera ha impedito che la superficie lunare subisse fenomeni erosivi paragonabili a quelli terrestri, in tal modo la crosta lunare conserva praticamente intatto l'aspetto fortemente craterizzato prodottosi miliardi di anni orsono al momento della sua formazione. L'assenza di atmosfera fa inoltre sì che non si abbiano fenomeni crepuscolari (il circolo di illuminazione è netto). L'albedo  (frazione della luce totale riflessa da un corpo) lunare è solo del 7%, contro quella della terra che è del 35%. In altre parole la terra (a causa delle superfici acquee, dei ghiacciai, delle nubi) riflette, per unità di superficie,  una quantità di luce solare incidente cinque volte superiore a quella riflessa dalla luna ed appare dunque dallo spazio molto più brillante.

 

Moto di rotazione

La luna ruota attorno al proprio asse da Ovest ad Est in circa 27 giorni terrestri (un giorno lunare dura 27 giorni terrestri). Il periodo di oscurità e quello di luce sono quindi molto lunghi. Se a ciò si aggiunge l'assenza di atmosfera, di nubi, acqua e copertura vegetale  si comprende come l'escursione termica (differenza di temperatura tra il giorno e la notte) sia molto elevata. La temperatura diurna può infatti raggiungere un centinaio di gradi °C, mentre di notte si può arrivare a 150 °C sotto zero.

 

Sistema Terra-Luna

In prima approssimazione la luna percorre un’orbita ellittica intorno alla terra, in senso antiorario se osservata dal polo nord celeste. La terra occupa naturalmente uno dei due fuochi dell’ellisse. Il punto di minima distanza Terra-Luna è detto perigeo (da centro a centro 356.410 km), mentre il punto di massima distanza prende il nome di apogeo (da centro a centro 406.697 km).
La distanza media è di 384.400 km.

 

 

Aristarco e la prima misura della distanza della Luna (Approfondimento facoltativo)

La prima stima della distanza della luna si deve ad Aristarco di Samo (III sec. a.C.), famoso soprattutto per la sua ipotesi eliocentrica, in seguito abbandonata in favore del geocentrismo tolemaico.
Nell’unica opera pervenutaci, “Sulle dimensioni e distanze del Sole e della Luna”, Aristarco afferma correttamente che quando la luna ci appare illuminata per metà essa deve necessariamente trovarsi al vertice dell’angolo retto di un triangolo rettangolo, ai rimanenti vertici del quale si trovano Terra e Sole. Aristarco valuta in 87° (un angolo retto meno un trentesimo di quandrante) l’angolo a compreso tra le visuali che dalla Terra portano alla Luna e al Sole. In termini trigonometrici ciò significa che l’angolo b = 3° e che il rapporto tra la distanza Terra-Luna (DL) e la distanza Terra-Sole (DS) è pari al seno di b.

In realtà al tempo di Aristarco non erano ancora disponibili tavole trigonometriche (la trigonometria nasce con Ipparco di Nicea verso la seconda metà del II secolo a.C) ed egli dimostra che il rapporto deve essere compreso tra 1/18 e 1/20. Il risultato è assolutamente corretto dal punto di vista formale, ma il valore dell’angolo a ottenuto da Aristarco è inferiore al valore reale (89° 51’ 10’’) per la evidente difficoltà di misurare un angolo così prossimo ad un angolo retto. Il valore corretto dell’angolo porta ad un rapporto tra le distanza pari a circa 1/390.

In realtà la massa della Luna non è del tutto trascurabile rispetto alla massa della Terra ed è quindi solo una grossolana approssimazione affermare che la Luna ruota intorno alla Terra. Più correttamente entrambe ruotano intorno ad un baricentro comune che si trova all’interno della Terra, circa 1700 km sotto la sua superficie. Per questo motivo Terra e Luna possono essere considerate un sistema gravitazionale doppio.


 

 

Moto di rivoluzione e fasi lunari

Il piano dell'orbita lunare non coincide perfettamente con il piano dell'orbita terrestre o eclittica (sul quale giace anche il sole), ma è inclinato rispetto ad esso di circa 5° (5° 8’ 43”).
Il moto di rivoluzione lunare fa sì che essa cambi continuamente la sua posizione relativa rispetto al sole ed alla terra. Si individuano usualmente 4 posizioni fondamentali:

a) congiunzione  La luna si trova tra il sole e la terra
b) opposizione    La terra si trova tra la luna ed il sole
c) quadrature     sono le due posizioni intermedie tra congiunzione ed opposizione. Luna terra e sole formano i vertici di un triangolo rettangolo.
Le posizioni di congiunzione ed opposizione prendono il nome di sizigie o sigizie. In effetti tali termini non si riferiscono solo alle posizioni della luna rispetto al sole ed alla terra ma a possibili posizioni reciproche di qualsiasi corpo del sistema planetario rispetto al sole. Naturalmente in ognuna di queste posizioni è possibile osservare la luna diversamente illuminata dal sole. Le diverse condizioni di illuminazione osservabili dalla terra sono dette fasi lunari.

  • quando la luna si trova in congiunzione noi osserviamo la metà non illuminata della luna. La fase lunare è detta di luna nuova o novilunio.  Durante il novilunio la luna sorge, culmina e tramonta con il sole.
  • quando la luna è in opposizione osserviamo la metà illuminata della luna. La fase lunare è detta di luna piena o plenilunio. Durante il plenilunio la luna sorge quando tramonta il sole, culmina a mezzanotte e tramonta al sorgere del sole.
  • quando la luna si trova nelle due quadrature l'emisfero lunare che noi osserviamo risulta per metà illuminato e per metà oscuro. Le due fasi lunari sono dette primo quarto e ultimo quarto.

La porzione della luna non illuminata dal sole dovrebbe risultare perfettamente oscura. In realtà essa è debolmente illuminata dalla luce del sole riflessa dalla terra. Tale debole chiarore è detto luce cinerea. La corretta interpretazione di tale fenomeno si deve a Leonardo da Vinci. Dalla fase di novilunio a quella di plenilunio si ha luna crescente. Nella fase contraria si ha luna calante.

Mese sidereo

La durata del periodo di rivoluzione è ancora una volta diversa a seconda che prendiamo come punto di riferimento una stella fissa o il sole. Il tempo necessario affinché la luna compia una rivoluzione completa di 360° intorno alla terra, ritornando nella stessa posizione rispetto ad una stella fissa è detto mese sidereo. Esso ha una durata di circa 27,32 giorni terrestri (27d 7h 43m 11,5s  = 27,321661 gsm = 2.360.591,5 s) La luna ruota intorno al suo asse impiegando lo stesso tempo che impiega a compiere una rivoluzione intorno alla terra. La conseguenza di tale curiosa coincidenza è che la luna rivolge sempre la stessa faccia alla terra. L’emisfero nascosto della luna si presenta più ricco di crateri di piccole dimensioni, mentre sono praticamente assenti i grandi mari che caratterizzano l’emisfero rivolto verso la terra. Quest’ultimo, a causa dell’attrazione gravitazionale terrestre, risulta inoltre leggermente più protuberante.

 

Mese sinodico e ciclo delle lunazioni (Metone)

Il mese sinodico o lunazione è il tempo necessario affinché la luna raggiunga nuovamente una fase lunare dello stesso segno. Ad esempio l'intervallo di tempo tra due lune piene consecutive. In altre parole il mese sinodico rappresenta il tempo necessario perché la luna raggiunga nuovamente la stessa posizione relativa rispetto al sole ed alla terra. Il mese sinodico dura circa 29,53 giorni terrestri (29d 12h 44m 2,9s = 29,530589 gsm = 2.551.442,9 s, oltre due giorni in più rispetto al mese sidereo. Ciò è dovuto al fatto che mentre la luna compie il suo moto di rivoluzione intorno alla terra, quest'ultima compie un tratto della sua orbita intorno al sole, cambiando perciò la sua posizione rispetto ad esso.


Poichè il mese sinodico dura 29,53 giorni, un anno non contiene un numero intero di lunazioni. In un anno giuliano si possono susseguire 12 lunazioni complete (354,367 gsm) con l'avanzo di circa 11 giorni. Di conseguenza le fasi lunari non si ripetono ogni anno alla stessa data, ma solo ogni 235 lunazioni, corrispondenti a circa 19 anni tropici.
Tale ciclo è detto ciclo aureo o di Metone (astronomo greco del V sec. a.C.)


La luna e le maree

A causa del suo moto di rivoluzione intorno alla terra la luna non sorge, culmina e tramonta sempre alla stessa ora tutti i giorni, ma con circa 50 minuti di ritardo ogni giorno. In altre parole la terra completa una rotazione intorno al suo asse rispetto alla luna in 24h e 50m circa (giorno lunare).

 

La luna è la principale responsabile (assieme al sole) dei fenomeni mareali che interessano l’idrosfera (ma anche l’atmosfera e in misura molto minore la stessa crosta terrestre). Si è già detto che gli effetti mareali sono dovuti alla diversa attrazione gravitazionale cui sono sottoposti punti diversi di uno stesso corpo. L’idrosfera, pensata per semplicità come un guscio sferico di spessore uniforme, si deforma sotto l’azione della luna assumendo la forma di un ellissoide di rotazione (ellissoide di marea) avente l’asse maggiore orientato lungo la direzione Terra-Luna. In tal modo, osservando il sistema Terra-Luna dal polo nord celeste, possiamo individuare 2 zone di alta marea in corrispondenza dei punti in cui la luna è allo zenit e al nadir e due zone di bassa marea nei punti intermedi, dove la luna appare sull’orizzonte, in procinto di sorgere o di tramontare.
L’asse maggiore dell’ellissoide di marea tende a rimanere sempre allineato con la luna, cosicché la Terra compie una rotazione rispetto ad esso in un giorno lunare (24h 50m). In altre parole, basse ed alte maree si alternano ogni quarto di giorno lunare (6h 12,5m).
Le forze che generano le maree si determinano a causa del non perfetto equilibrio esistente tra forze centrifughe e gravitazionali nei vari punti della Terra. Tale equilibrio esiste solo al centro della Terra, ma non alla sua superficie, dove la forza gravitazionale può risultare maggiore (nei punti più vicini alla luna) o minore (nei punti più distanti) rispetto alla forza centrifuga.

L’azione mareale della Luna è circa 2,2 volte più intensa di quella del Sole. Quando la Luna si trova in sizigie gli effetti mareali dei due astri si combinano e le alte maree presentano le massime ampiezze (maree di sizigie), mentre quando la Luna si trova in quadratura l’effetto mareale del Sole indebolisce quello della Luna, senza peraltro annullarlo (maree di quadratura).

Determinazione dell’accelerazione mareale (Approfondimento facoltativo)
Terra e Luna si attraggono con una forza pari a , sempre diretta in senso opposto alla direzione della Luna.
Dunque, mentre la forza centrifuga è identica in tutti i punti, la forza gravitazionale esercitata è invece diversa in intensità e in direzione, a causa della differente distanza dal centro della Luna.  Le forze mareali sono la risultante di tali forze applicate e si manifestano evidentemente in tutti i punti in cui tale risultante è diversa da zero e quindi in tutti i punti che non siano il centro della terra, dove la forza gravitazionale è esattamente controbilanciata dalla reazione centrifuga. Se R è il raggio terrestre e d è la distanza tra i baricentri della Terra e della Luna, l’accelerazione gravitazionale nei punti in cui la Luna è allo zenit e al nadir vale

e quindi l’accelerazione mareale in grado di produrre le alte maree

e nell’ipotesi che il raggio terrestre R sia trascurabile rispetto alla distanza d Terra-Luna (R<<d  e  R2<<d2)   Si può dimostrare che nei punti intermedi, di bassa marea, l’accelerazione mareale è, in modulo, esattamente la metà che nei punti di alta marea, mentre la direzione dei vettori è centripeta, essendo orientata verso il centro della Terra. Gli effetti mareali del Sole sono meno intensi di quelli lunari. Per confrontare gli effetti mareali dei due astri, determiniamo il rapporto tra le rispettive accelerazioni mareali

Mese draconico, retrogradazione dei nodi ed eclissi

Essendo l'orbita lunare inclinata di circa 5° (5° 8’ 43”) rispetto all'eclittica, la luna compie metà del suo percorso di rivoluzione sopra il piano dell'eclittica e metà sotto. I due punti di intersezione, in cui la luna attraversa il piano dell'eclittica sono detti nodi e la linea che li congiunge è detta linea dei nodi. La linea dei nodi rappresenta l'intersezione tra il piano dell'eclittica ed il piano dell'orbita lunare.
La linea dei nodi (intersezione del piano dell'orbita lunare con l'eclittica) ruota, in senso opposto al movimento di rivoluzione lunare (e terrestre), compiendo una rotazione completa in senso orario rispetto alle stelle fisse in 18,6 anni (retrogradazione o regressione dei nodi). In altre parole i nodi vanno incontro alla luna, la quale ritorna pertanto ad un nodo dello stesso segno (ad esempio il nodo ascendente) un po' prima di aver  compiuto una rivoluzione completa di 360° rispetto alle stelle fisse.
Ricordando che il tempo necessario per compiere una rivoluzione completa rispetto alle stelle fisse è definita mese sidereo (27,32166 giorni solari medi = 27d 7h 43m 12s), la luna compierà un'orbita rispetto ad un nodo in un tempo inferiore. Tale intervallo di tempo è detto mese draconitico o draconico (27,212220 gsm = 27d 5h 5m 35,8s = 2.351.135,8 s). La rotazione dell’orbita lunare, misurata dalla regressione dei nodi, muta periodicamente l’inclinazione dell’orbita lunare nei confronti del piano equatoriale.  Così l’angolo che il piano dell’orbita lunare forma con il piano equatoriale va da un massimo di 28° 35’ (23° 26’ + 5° 9’), quando orbita lunare ed equatore sono inclinati in senso opposto rispetto all’eclittica (A), ad un minimo (dopo 9,3 anni) di 18° 17’ (23° 26’ - 5° 9’), quando orbita lunare ed equatore sono inclinati nello stesso senso rispetto all’eclittica (B). La Luna può dunque giungere allo zenit solo su regioni comprese tra le latitudini di 28° 35’ N e S (ed in certi anni solo su regioni comprese tra le latitudini di 18° 17’ N e S).
La regressione della linea dei nodi porta periodicamente questi ultimi ad occupare le posizioni di sizigie. Quando ciò avviene si producono le condizioni necessarie al manifestarsi del fenomeno delle eclissi. Infatti quando la Luna si trova contemporaneamente in sizigie e in uno dei due nodi, Luna Sole e Terra si trovano ad essere allineati. Nel caso l'allineamento sia perfetto si parla di eclissi totali, nel caso ciò non avvenga e la luna in sizigie si trovi solo nelle vicinanze di un nodo si possono produrre eclissi parziali.
In realtà l’eclisse è un fenomeno per cui un astro entra nel cono d'ombra di un altro. Sono dunque propriamente eclissi solo quelle di luna, mentre le eclissi di sole sono in effetti occultazioni (per cui un astro passa davanti ad un altro e lo occulta).

 

Eclisse di Luna

Quando la luna si trova in opposizione e in un nodo essa è destinata a scomparire completamente nel cono d'ombra della terra. Naturalmente durante le eclissi di luna, la luna si trova sempre in plenilunio.

Quando la luna attraversa il cono d'ombra l'eclisse è visibile da tutto l'emisfero terrestre notturno. Poiché l’ombra della Terra è quasi 3 volte più grande della Luna, un’eclissi totale di Luna può durare oltre 100 minuti. Affinché si produca un'eclisse di luna è necessario che la luna ed un nodo si trovino contemporaneamente in opposizione. Se la linea dei nodi fosse ferma rispetto alle stelle fisse, i nodi si verrebbero a trovare in opposizione ogni sei mesi (alternativamente il nodo ascendente e discendente) e potrebbero pertanto verificarsi non più di due eclissi lunari all'anno. Poichè la linea dei nodi si muove di moto retrogrado di circa 20° all'anno, i nodi si presentano in opposizione con periodicità leggermente inferiore ai 6 mesi e quindi a volte possono presentarsi le condizioni per eclissi lunari anche tre volte all'anno.

 

Eclisse di Sole (occultazione)

L'eclisse o occultazione solare si produce ogniqualvolta la luna ed un nodo si trovano in congiunzione. La luna è in grado di oscurare il sole in quanto possiede lo stesso diametro apparente della nostra stella.
Nel caso però in cui la luna si trovi in apogeo e la terra in perielio, il diametro apparente del sole risulta maggiore di quello lunare e si producono le cosiddette eclissi anulari, in cui un anello luminoso del disco solare compare dietro al bordo lunare.


Essendo il cono d'ombra della luna molto meno esteso di quello terrestre, le eclissi solari sono visibili sono in una stretta area ampia da 200 a 300 km (zona di totalità) che si sposta da ovest verso est per migliaia di chilometri, attorniata da una vasta zona di penombra. Per un osservatore che si trovi a percorrere il diametro di tale zona oscura l'eclisse può durare fino a 7m 30s.
A differenza delle eclissi lunari, le eclissi solari possono verificarsi ai due passaggi consecutivi della luna in prossimità di un nodo in congiunzione. Per questo motivo si possono avere fino ad un massimo di 5 eclissi di sole all'anno. In un anno si verificano un minimo di due eclissi (entrambe di sole) ed un massimo di 7 (5 di sole e due di luna; eccezionalmente 4 di sole e 3 di luna). Le eclissi solari sono dunque in assoluto più frequenti. Ma relativamente ad un osservatore particolare risultano più frequenti le eclissi di luna in quanto visibili sempre da tutti gli osservatori dell'emisfero notturno.  L'intervallo di tempo medio che separa due eclissi solari totali osservabili da una particolare regione terrestre è di circa 360 anni.

 

Il ciclo delle eclissi (Saros)

Mediamente si verificano da 2 a 7 eclissi all'anno. I Caldei avevano scoperto che le eclissi si ripetevano con la stessa successione ogni 223 lunazioni pari a 18 anni circa (18 anni e 10-12 giorni, a seconda del numero di anni bisestili presenti). Tale intervallo di tempo è noto come ciclo di Saros. In tale periodo si susseguono 71 eclissi, 43 di sole e 28 lunari.

Librazioni

Si è detto che poiché la rotazione e la rivoluzione lunare hanno la stessa durata di circa 27 giorni, la luna rivolge sempre la stessa faccia alla terra. In realtà noi possiamo vedere circa il 59% della superficie lunare. Ciò è dovuto ad oscillazioni periodiche della Luna dette librazioni, descritte per la prima volta da Galileo e da lui definite titubazioni. Le librazioni si distinguono in vere e apparenti.

  • Le librazioni vere o fisiche sono dovute all’attrazione che la terra esercita sul rigonfiamento equatoriale della luna e ad irregolarità nel moto di rotazione lunare.
  • Le librazioni apparenti o geometriche si possono suddividere in
  • librazioni in longitudine - dovute al fatto che mentre il moto di rotazione della luna avviene a velocità costante, in modo regolare ed uniforme, il moto di rivoluzione è più veloce in perigeo e più lento in apogeo. In tal modo noi possiamo scorgere di volta in volta una piccola fetta di superficie lunare normalmente non visibile, alternativamente ad est e ad ovest (± 7,5°). Il risultato è che la luna, vista dalla terra sembra produrre lievi oscillazioni attorno al suo asse, paragonabili a quelle di una testa che dice di no.
  • librazioni in latitudine - dovute al fatto che l’asse di rotazione lunare è inclinato di 6° 41’ rispetto alla perpendicolare all’orbita della luna. Poiché l’asse mantiene costante la sua orientazione rispetto alle stelle fisse (come avviene anche per l’asse terrestre), di conseguenza durante il suo moto di rivoluzione la luna ci mostra alternativamente il suo polo nord ed il suo polo sud (± 6,7°). Il risultato è che la luna, vista dalla terra sembra produrre lievi oscillazioni paragonabili a quelle di una testa che dice di si.

 

  • librazioni parallattiche o diurne - dovute al fatto che la distanza Terra-Luna non è trascurabile rispetto alle dimensioni della terra. Osservando la luna quando sorge e tramonta e si trova appena sopra l’orizzonte ci poniamo alle due estremità di una base parallattica costituita approssimativamente dal diametro terrestre e ciò ci consente di scorgere ± 1° di superficie lunare.

 

L'orbita della luna intorno al sole

Per un osservatore esterno al nostro sistema planetario la luna non compie delle ellissi intorno alla terra, ma segue la terra nella sua orbita ellittica intorno al sole, disegnando intorno ad esso una traiettoria appena ondulata (epicicloide). L'orbita lunare possiede la notevole caratteristica di presentare sempre la concavità rivolta verso il sole

 

Ipotesi sull'origine della luna

I campioni lunari prelevati dalle missioni Apollo hanno indicato che la luna si è formata 4,5 miliardi di anni fa, contemporaneamente dunque alla terra ed al resto del sistema solare. L'analisi chimica dei campioni ha inoltre dimostrato che esistono alcune differenze sostanziali rispetto alla terra. La luna possiede infatti una quantità minore di elementi volatili (K, Na, B etc) mentre è particolarmente ricca di sostanze non volatili o refrattarie (Al, Ca, Th, Lantanidi). Tuttavia rocce terrestri e rocce lunari presentano lo stesso rapporto fra l'isotopo leggero dell'ossigeno (16O) e gli isotopi pesanti (17O e 18O). Ciò fa ritenere che si siano formate nella stessa regione del sistema solare, poiché il rapporto tra gli isotopi dell'ossigeno è molto diverso nelle meteoriti, soprattutto in quelle che provengono da regioni lontane del sistema solare. Sulla base di tali risultanze possiamo analizzare le diverse ipotesi che nel tempo sono state avanzate sull'origine del nostro satellite.

 

Ipotesi della fissione

Proposta inizialmente da George Darwin, figlio di Charles, prevede che dalla terra allo stato primordiale semifluido si sia staccata una porzione di magma, a causa del rapido moto di rotazione. Molti scienziati ritengono infatti che inizialmente la terra avesse un periodo di rotazione estremamente breve dell'ordine di qualche ora. Da allora ad oggi la terra avrebbe rallentato la sua velocità di rotazione, frenata dall'attrazione gravitazionale della luna. Una variante successiva dell'ipotesi della fissione prevede che la terra abbia addirittura aumentato inizialmente la sua velocità di rotazione a causa dello sprofondamento del materiale metallico verso il centro durante il processo di formazione del suo nucleo. L'aumento di velocità avrebbe generato la forza centrifuga necessaria al distacco del materiale destinato a formare il nostro satellite.
L'ipotesi della fissione spiegherebbe perché la luna presenta una densità media inferiore a quella terrestre. Infatti la luna si sarebbe formata da materiale terrestre superficiale, più leggero di quello che occupa gli strati terrestri più profondi.
Ma non è in grado di giustificare:
- l'inclinazione del piano dell'orbita lunare rispetto all'eclittica
- la diversa composizione chimica evidenziata dalle recenti missioni spaziali
- l'attuale valore del momento angolare del sistema Terra-Luna. Infatti se la luna si fosse staccata dalla terra il momento angolare attuale del sistema Terra-Luna dovrebbe essere uguale a quello della terra prima del processo di fissione, ma il momento angolare attuale del sistema Terra-Luna è notevolmente inferiore a quello richiesto dalle teorie della fissione per giustificare il distacco.

 

Ipotesi della cattura

Secondo tale ipotesi la luna sarebbe un corpo formatosi in un'altra zona del sistema solare e catturato gravitazionalmente mentre passava casualmente accanto alla terra. Tale ipotesi presenta il vantaggio di poter spiegare la diversa inclinazione dell'orbita lunare e la sua diversa composizione chimica, ma si tratta di un'ipotesi altamente improbabile. Un corpo celeste che passasse infatti casualmente vicino alla terra dovrebbe possedere una traiettoria ben precisa per essere catturato. Anche lievi differenze porterebbero ad un impatto o ad una spinta gravitazionale con sorpasso (effetto fionda, simile al cosiddetto “gravity assist” sfruttato dalle sonde interplanetarie).

 

Ipotesi dell’accrescimento

Secondo tale ipotesi la luna si sarebbe formata attraverso un processo analogo a quello attraverso il quale si formò il nostro pianeta. In altre parole il materiale meteorico inizialmente presente sull'orbita terrestre si sarebbe condensato a formare un pianeta doppio. In tal caso però la struttura interna e la composizione chimica della luna dovrebbero essere analoghe a quelle terrestri. Tale ipotesi non spiega dunque perché la luna possieda un nucleo metallico così piccolo (o forse addirittura inesistente, vista la sua densità media così ridotta - 3,3) e le sue rocce presentino abbondanze chimiche così diverse.

Ipotesi dell’impatto meteorico

Secondo tale ipotesi (Hartmann e Davis - 1975; R.A. Daly 1946) la luna si sarebbe formata a causa di un impatto della terra con un gigantesco meteorite. L'enorme quantità di detriti scagliati in orbita si sarebbero poi aggregati a formare la luna. Recentemente tale ipotesi sta trovando un certo consenso in quanto permette di giustificare numerosi evidenze osservative che gli altri modelli non sono in grado di spiegare. Possiamo infatti ipotizzare che

  • durante l'impatto il nucleo metallico, più pesante, del meteorite si sia fuso con la terra, mentre  solo i materiali più leggeri siano andati a formare i frammenti  dai quali si condensò la luna.
  • il meteorite avesse una composizione inizialmente simile a quella terrestre (stessa composizione isotopica dell'ossigeno), ma durante l'impatto l'enorme liberazione di energia abbia consentito solo agli elementi meno volatili di partecipare alla costituzione del nostro satellite.
  • l'impatto sia avvenuto non centralmente, ma secondo un angolo tale da imprimere alla terra un moto di rotazione molto rapido, tale da giustificare il suo elevato momento angolare.

 


Petrologia

 

Minerali e rocce

La petrologia è la scienza che studia e descrive la struttura e la genesi delle rocce. Le rocce sono aggregati di uno o più minerali, formatesi attraverso processi di natura diversa, legati essenzialmente a fenomeni geologici che richiedono milioni di anni per completarsi. I minerali sono sostanze inorganiche, allo stato solido, caratterizzate da una composizione definita e rappresentabili quindi attraverso una caratteristica formula chimica. Quasi tutti i minerali  sono inoltre caratterizzati da una struttura molecolare rigorosamente ordinata, detta struttura cristallina ed i solidi che la possiedono si presentano come cristalli, figure geometriche caratterizzate da facce, spigoli e vertici. Alcuni minerali presentano invece una struttura molecolare caotica  e disordinata, detta struttura amorfa.  Ad esempio il biossido di silicio (SiO2) può formare bei cristalli regolari e trasparenti di quarzo, mentre quando si presenta in struttura amorfa forma minerali variamente colorati (per la presenza di impurezze) noti come agata, onice, selce, corniola a seconda della genesi e del colore.

 

Cenni di cristallografia

Le particelle che formano un cristallo, atomi o molecole che siano, risultano disposte ai vertici di una specie di reticolato ordinato che si ripete in modo omogeneo lungo le tre direzioni dello spazio. Il cristallo può infatti essere pensato come la ripetizione periodica nello spazio di una struttura geometrica elementare. Tale struttura prende il nome di cella elementare. Ciascuna cella elementare viene caratterizzata da particolari elementi di simmetria. Gli elementi di simmetria si definiscono come i luoghi geometrici rispetto ai quali si verifica il ripetersi di una faccia, di uno spigolo o di un vertice, come conseguenza di una trasformazione spaziale. Sono possibili tre tipi di trasformazioni spaziali che individuano altrettanti elementi di simmetria:
- la rotazione attorno ad un asse (asse di simmetria A)
- la riflessione su di una superficie (piano di simmetria P)
- l'inversione rispetto ad un punto (centro di simmetria C).
Ad esempio se un cristallo si ripresenta uguale (invarianza) dopo ogni rotazione di 180° intorno ad un asse, si dice che possiede un asse di simmetria binario (A2). Un cristallo può essere caratterizzato da un certo numero di assi di simmetria (i quali possono essere binari, terziari, quaternari e senari), un certo numero di piani di simmetria ed eventualmente un centro di simmetria. Quando esiste il centro di simmetria coincide sempre con il baricentro del cristallo. Il centro di simmetria è un punto che divide a metà segmenti che uniscono elementi equivalenti del cristallo (ad esempio due vertici o due facce opposte). L'insieme degli elementi di simmetria di un cristallo definiscono il suo grado di simmetria. Minerali diversi possono presentare lo stesso grado di simmetria e vengono per questo raggruppati in una stessa classe di simmetria. Sono note 32 classi di simmetria.
Le 32 classi di simmetria sono raggruppate in 7 sistemi cristallini, sulla base della contemporanea presenza di alcuni elementi di simmetria tipici. Ad esempio tutte le classi che presentano un solo asse quaternario vengono raggruppate nel sistema tetragonale, quelle che presentano un solo asse ternario nel sistema trigonale etc. A differenza dei solidi amorfi, i solidi cristallini sono anisotropi rispetto ad alcune loro proprietà. In altre parole esistono alcune proprietà vettoriali (conducibilità elettrica, conducibilità termica, sfaldabilità etc) la cui misura dà valori diversi a seconda della direzione lungo la quale vengono misurate.

 

 

Cenni di mineralogia

I minerali sono composti per il 98% da 8 elementi chimici.
L'Ossigeno è l'elemento più abbondante nei minerali (47% in peso e ben 93% in volume). Segue il Silicio (27,3%), l'Alluminio (8,1%), il Ferro (5,1%), il Calcio (3,6%), il Sodio (2,5%), il Potassio (2,5%), il Magnesio (2,1%). Tutti gli altri costituiscono solo l'1,8%.

 

Polimorfismo ed isomorfismo

Alcuni minerali in condizioni termodinamiche differenti possono cristallizzare in strutture reticolari diverse. Il fenomeno è noto come polimorfismo. Ad esempio il carbonato di calcio (CaCO3) in condizioni di elevata pressione cristallizza come aragonite, mentre a pressione atmosferica cristallizza come calcite. Nel caso il polimorfismo interessi sostanze allo stato elementare si parla di allotropia. Il carbonio presenta ad esempio 3 forme allotropiche: grafite, diamante, fullerene.

E' evidente che la presenza di una forma polimorfa piuttosto che un'altra può fornirci utili informazioni sulle condizioni e l'ambiente di formazione di una roccia.
Nei minerali di interesse petrologico è di grande importanza il fenomeno dell'isomorfismo. Si dicono isomorfogeni o vicarianti gli elementi che, presentando raggi ionici simili, possono facilmente sostituirsi nel reticolo cristallino senza che questo modifichi il suo grado di simmetria. Si ammette che affinché 2 ioni possano reciprocamente sostituirsi in un cristallo il loro raggio ionico non debba differire per più del 15%.
I più diffusi ed importanti fenomeni di vicarianza si hanno tra
Na+ (0,97 Å) e Ca2+ (0,99 Å)
Fe2+ (0,74 Å), Mg2+ (0,66 Å) , Fe3+ (0,64 Å)
Al3+ (0,51 Å) e Si4+ (0,42 Å)
In pratica ciò consente a sostanze chimiche diverse di cristallizzare nella stessa classe cristallina.
Se gli ioni hanno dimensioni molto diverse, come accade ad esempio per Ca2+ e Mg2+, allora formano un sale doppio in cui essi sono presenti in proporzione stechiometrica. Ne è un esempio il minerale dolomite CaMg(CO3)2 Quando invece gli ioni presentano dimensioni simili allora possono formare composti isomorfi. Le famiglie isomorfe costituiscono in genere una serie continua di composti in cui gli ioni vicarianti si trovano in tutti i rapporti. Per indicare una serie isomorfa gli elementi vicarianti vengono scritti tra parentesi tonde e separati da una virgola.
Ad esempio (Fe,Mg)CO3 non rappresenta un sale doppio, ma una serie isomorfa che comprende composti in cui il Ferro ed il Magnesio si trovano in tutti i rapporti compresi tra i due estremi puri, costituiti dalla magnesite MgCO3 e dalla siderite FeCO3. Nel caso gli elementi vicarianti presentino carica diversa, come accade per  Na+ e Ca2+, è necessario che in un altro nodo del reticolo si verifichi una contemporanea sostituzione compensatrice: in genere Si4+ con Al3+.
E' ciò che accade in moltissimi silicati. Ad esempio nei plagioclasi in cui si ha la sostituzione doppia

Na+ Si4+   Ca2+ Al3+

La serie isomorfa dei plagioclasi va dall'albite Na[AlSi3O8] all'anortite Ca[Al2Si2O8]. La formula generale è pertanto (Na,Ca)[Al(Al,Si)Si2O8] (si noti che nella formula gli elementi vicarianti sono posti tra parentesi tonde e vengono separati da una virgola). I plagioclasi, come tutte le serie isomorfe, possono essere descritti come soluzioni solide costituite da miscele omogenee dei composti puri che possono mescolarsi in qualsiasi proporzione (altri esempi di soluzioni solide sono le leghe metalliche). La maggior parte dei minerali che formano le rocce appartengono alle seguenti classi di composti chimici:
1) SILICATI - Possono essere pensati come sali dell'acido ortosilicico (H4SiO4), in cui gli idrogeni vengono sostituiti in proporzioni diverse dai metalli citati in precedenza (SiO44- anione silicato). I silicati costituiscono da soli più dell'80% della crosta terrestre.
2) CARBONATI - Sono i sali dell'acido carbonico (H2CO3). Tra i carbonati più diffusi vi è sicuramente il carbonato di calcio, che va a formare le rocce calcaree. (CO32- anione carbonato)
3) OSSIDI e IDROSSIDI - Composti di metalli più ossigeno (ematite Fe2O3) e metalli più ossidrili (brucite Mg(OH)2)
4) SOLFURI - Sono i sali dell'acido solfidrico (H2S) (pirite FeS2, blenda ZnS) (S2- anione solfuro).
5) SOLFATI - Sono i sali dell'acido solforico (H2SO4) (solfato di calcio biidrato o gesso CaSO4*2H2O) (SO42- anione solfato)

  • ALOGENURI O ALOIDI - Sono sali degli acidi alogenidrici (HBr, HCl, HF) (cloruro di sodio NaCl).

I Silicati

Come si è detto i silicati rappresentano il gruppo di minerali più diffuso e più ricco di varietà diverse.
La struttura chimica di base che entra nella composizione di tutti i silicati è uno ione con 4 cariche negative costituito da un tetraedro avente il Silicio al centro legato attraverso 4 legami covalenti a 4 atomi di Ossigeno disposti ai vertici. (SiO44-)(il Silicio è infatti ibridato sp3). I tetraedri di silicio possono presentare ossigeni  in comune ed essere quindi uniti per uno o più vertici.
Le cariche negative residue vengono neutralizzate dai cationi metallici, con estesi fenomeni di vicarianza. La parziale sostituzione del Silicio con l'Alluminio dà luogo agli allumosilicati (o alluminosilicati o silicoalluminati).
I minerali ricchi di Silicio ed Alluminio sono detti sialici (da Silicio e Alluminio). I cationi che più frequentemente si trovano nel loro reticolo sono Na+  e K+ (elementi alcalini). I silicati sialici tendono a presentare peso specifico e punto di fusione relativamente bassi e colore chiaro.
I silicati poveri di alluminio presentano in genere cationi Ca2+ Fe2+ Mg2+ (Ferro e alcalino terrosi) e sono per questo detti femici (da Ferro e Magnesio). I silicati femici tendono a presentare peso specifico e punto di fusione relativamente alti e colore scuro.
In base alla disposizione reciproca assunta dai tetraedri si dividono i silicati in 6 gruppi.

  • Silicati a tetraedri isolati (nesosilicati, dal greco nesos = isola) in cui le cariche negative sono neutralizzate da ioni metallici positivi che si alternano ai tetraedri. Ricordiamo le olivine (o perìdoto), silicati di Fe e Mg, ad alto peso specifico, di colore verde scuro, componenti essenziali delle rocce magmatiche basiche.  Come vedremo successivamente il termine basico non ha in petrologia lo stesso significato che presenta in chimica, ma si riferisce al basso contenuto in silice. Nesosilicati sono anche i granati costituenti di molte rocce metamorfiche, anch'essi presenti in natura in serie isomorfe.
  • Silicati a gruppi di due tetraedri (sorosilicati, dal greco soros = gruppo) Due tetraedri presentano un atomo di ossigeno in comune. Sono tipici sorosilicati gli epìdoti.
  • Silicati con tetraedri legati ad anello (ciclosilicati) Si formano per unione ciclica di 3,4 o 6 tetraedri con due ossigeni in comune ciascuno. Ricordiamo le tormaline ed il berillo (che nelle varietà acquamarina e smeraldo viene usato come gemme), silicati di alluminio che caratterizzano rocce ignee estremamente acide (ricche di silice) come le pegmatiti.
  • Silicati con tetraedri legati in catene singole o doppie  (inosilicati, dal greco inos = catena) Sono costituenti essenziali di moltissime rocce ignee e metamorfiche neutre e basiche. Si dividono in anfiboli, a catena doppia e piròsseni, a catena semplice. Nella struttura ad anelli degli anfiboli trovano posto gruppi ossidrili OH-.
  • Silicati con tetraedri a strati (fillosilicati - dal greco fillon = foglia) Ciascun tetraedro presenta i 3 ossigeni di base in comune con altri tetraedri a formare uno strato. Più strati si sovrappongono a formare una struttura a sandwich in cui si alternano ioni metallici e ioni ossidrili. Anche dal punto di vista macroscopico si presentano come minerali sottilmente stratificati facilmente sfaldabili in lamine. Ricordiamo i serpentini ed il talco, minerali tipici di rocce metamorfiche basiche che si formano per alterazione metamorfica dagli anfiboli e dai pirosseni. Le miche (dal latino mica = briciola), silicati trasparenti nelle varietà muscovite (mica bianca, tipica di rocce ignee acide) e biotite (mica nera, tipica di rocce ignee basiche). Le miche si ritrovano in granuli minuscoli, insieme ad altri silicati a formare particolari rocce sedimentarie dette argille. Altri fillosilicati presenti nelle argille sono la montmorillonite e la caolinite (che derivano dall'alterazione chimica dei feldspati e dei plagioclasi (i principali tectosilicati).
  • Silicati con tetraedri legati per i 4 vertici (tectosilicati - dal greco tectonichè (techne) = architettura) Si formano quando ciascun tetraedro presenta 4 ossigeni in comune con altri tetraedri. In tal caso si produce un reticolato tridimensionale in cui il rapporto tra atomi di ossigeno e di silicio è di 2:1 e la carica residua è nulla. Nel caso non vi siano altri elementi nel reticolato il minerale corrisponde al quarzo (biossido di silicio cristallino), costituito da un'unica molecola tridimensionale che occupa tutto il cristallo. Il quarzo è il minerale più abbondante della crosta terrestre. Si trova in quasi tutte le rocce ignee e metamorfiche, in particolar modo in quelle acide. Granuli di quarzo si trovano anche in molte rocce sedimentarie, soprattutto nelle arenarie. In tutti gli altri tectosilicati alcuni atomi di silicio al centro dei tetraedri sono sostituiti da atomi di Alluminio che formano così tetraedri AlO45- (L'alluminio è un elemento del III gruppo A con nox +3, a differenza del Silicio che, appartenendo al IV gruppo A, presenta nox +4). Si manifestano perciò delle cariche negative nel reticolato che vengono neutralizzate dalla presenza di ioni metallici (soprattutto Na+, K+ e Ca2+) che trovano posto in "tasche" che si formano nell'edificio cristallino. Tra i tectosilicati più importanti ricordiamo i feldspati (dal tedesco feld = campo e spat = sasso; costituenti fondamentali delle rocce ignee acide e neutre) e i feldspatoidi. I feldspati si suddividono in feldspati potassici, come l'ortoclasio K[AlSi3O8]  e feldspati sodico-calcici, come i plagioclasi (albite e anortite). I feldspatoidi sono tectosilicati sottosaturi in silice.

 

 

Le rocce: classificazione

Le rocce vengono classificate in relazione al processo attraverso il quale si sono formate in 3 gruppi:
Rocce ignee o magmatiche - formatesi attraverso un processo di raffreddamento e solidificazione di una massa fusa di composizione prevalentemente silicatica detta magma.
Rocce sedimentarie - si formano per deposizione e compattazione di materiali che possono provenire dalla degradazione di rocce preesistenti (detriti o clasti), da resti di organismi viventi, dalla precipitazione di composti chimici sciolti in acqua.
Rocce metamorfiche - si producono attraverso processi di profonda alterazione strutturale di rocce preesistenti legati a modificazioni delle condizioni termodinamiche (in genere forti aumenti di temperatura e pressione).
Tra le tre classi di rocce esiste uno scambio dinamico. Rocce metamorfiche si possono infatti formare a partire da rocce magmatiche e sedimentarie (e anche da rocce metamorfiche di tipo diverso). Rocce sedimentarie possono costituirsi a partire dalla disgregazione di rocce di una qualsiasi delle suddette classi. Infine un qualsiasi tipo di roccia può subire un processo di fusione che la trasforma in un magma in grado di solidificare in rocce ignee. Tale complessa catena di interconnessioni è chiamata ciclo delle rocce o ciclo litogenetico. Il riconoscimento di una roccia e la sua conseguente classificazione richiedono essenzialmente la determinazione del tipo di tessitura (forma, dimensioni ed orientazione della grana)  e dei rapporti quantitativi tra i minerali che la compongono (determinazione del modo della roccia). L'analisi modale può essere effettuata ad occhio per rocce a grana grossa o osservando al microscopio sezioni sottili (intorno ai 30 micron) per rocce a grana fina. Nel caso di rocce a grana finissima o addirittura a struttura amorfa è necessario ricorrere ad un'analisi chimica. In tal caso si ottiene una composizione in ossidi e minerali semplici che, confrontata con modelli convenzionali, permette di ottenere una composizione mineralogica teorica o virtuale sotto forma di minerali standard, detta norma.

 

Rocce ignee o magmatiche

Il magma da cui prende origine tale gruppo di rocce è costituito da una miscela di silicati in cui si trovano disciolti diversi elementi e composti gassosi (H2, HCl, Cl2, F2, HF, H2S, SO2 etc). In realtà al di sopra di una certa temperatura (1300-1400°C) i gli ioni SiO44- si muovono liberamente nel magma senza essere in grado di stabilire legami permanenti con gli ioni metallici e quindi la presenza di silicati in queste condizioni è solo virtuale. Solo quando la temperatura comincia a scendere si possono formare le molecole dei primi minerali, naturalmente quelli a più elevato punto di solidificazione (silicati femici). I gas, detti anche componenti volatili o agenti mineralizzatori, mantengono il magma ad una pressione molto elevata che ne facilita la risalita qualora si apra una fessura nella crosta terrestre. Inoltre rendono il magma molto fluido favorendo il processo di cristallizzazione dei minerali.  Il magma si trova racchiuso in camere magmatiche, talvolta di dimensioni imponenti, all'interno della crosta terrestre, ad una profondità che può variare da qualche km a qualche decina di km. Se il magma solidifica in profondità all'interno della crosta terrestre in condizioni di pressione elevata si formano le rocce magmatiche intrusive (o plutoniche),  se invece la solidificazione avviene una volta che il magma è fuoriuscito e quindi in condizione di bassa pressione si formano le rocce magmatiche effusive (o vulcaniche). Se infine il magma  risale fino a profondità non troppo elevate e solidifica in condizioni di media pressione si generano rocce magmatiche ipoabissali (o filoniane)

 

Rocce intrusive (Plutoniti)

Se la solidificazione avviene in profondità, in presenza della componente volatile, attraverso un processo di lento raffreddamento, tutti i minerali hanno l'opportunità di cristallizzare più o meno regolarmente. Ne risulta una roccia costituita interamente da cristalli dei vari minerali,  distinguibili ad occhio nudo. Le rocce intrusive presentano perciò una tipica struttura olocristallina. I primi minerali che cristallizzano hanno la possibilità di assumere il proprio abito cristallino e vengono perciò detti idiomorfi, mentre i minerali che solidificano a temperature più basse si adattano a riempire gli spazi rimasti e vengono detti allotriomorfi.

 

Rocce effusive (Vulcaniti)

Se il magma, dopo essere risalito, solidifica in superficie attraverso un rapido processo di raffreddamento e degasamento che lo priva della componente volatile, solo i minerali altofondenti (a più elevato punto di fusione), che si sono potuti solidificare in precedenza, potranno formare cristalli evidenti (fenocristalli), gli altri minerali formeranno una matrice microcristallina, costituita da cristalli invisibili ad occhio nudo, o, addirittura, un solido amorfo. Tale struttura, tipica del porfido, è detta struttura porfirica, caratterizzata da alcuni fenocristalli immersi in una pasta di fondo microcristallina o amorfa. In alcuni casi, quando il raffreddamento è particolarmente rapido, le rocce effusive possono dar luogo a strutture particolari, come nel caso delle ossidiane, in cui tutti i minerali si sono bloccati nella struttura completamente caotica che caratterizza i fluidi, producendo un solido perfettamente amorfo o "vetroso". Un altro caso particolare è quello delle pomici, in cui un degasamento particolarmente rapido ha prodotto una struttura spugnosa.

 

Rocce ipoabissali (ipoabissaliti)

Si tratta di rocce che si producono a causa della parziale risalita di masse magmatiche di piccole dimensioni che vengono iniettate in zone relativamente superficiali della crosta terrestre. Nonostante non subiscano degassamento tali rocce presentano una struttura porfirica simile a quella delle rocce effusive a causa del veloce raffreddamento legato alle piccole dimensioni che caratterizzano tali intrusioni superficiali.

 

Caratteristiche chimico-fisiche dei magmi

I magmi possono presentare caratteristiche diverse e quindi, durante il processo di solidificazione, possono dare origine a rocce con diversa composizione mineralogica.
Il criterio fondamentale attraverso il quale si classificano i magmi e le rocce che da essi traggono origine, tiene conto essenzialmente del diverso contenuto in silice totale, sia quella che nelle rocce si troverà sotto forma di silicati ("silice legata") , sia quella che si troverà sotto forma di "silice libera" a formare il quarzo. Maggiore è il contenuto in silice di un magma (e delle rocce da esso derivate) e più il magma viene classificato come "acido". In tal caso i termini "acido", "basico" e "neutro" non hanno nulla a che vedere con il pH del magma, ma rimandano al fatto che i silicati possono essere pensati come derivati dell'acido silicico. La silice ha un punto di fusione relativamente basso e la sua presenza nel magma tende a renderlo maggiormente viscoso e poco fluido. Questo è il motivo per cui i magmi acidi sono caratterizzati da temperature inferiori e da una maggior viscosità rispetto ai magmi basici (poveri in silice).

Magmi acidi o sialici (silice > 65%)

Sono caratterizzati da una percentuale di silice totale superiore al 65%. Contengono soprattutto silicati di Alluminio (da cui la denominazione di "sialici"), come i feldspati di Potassio (ortoclasio), i plagioclasi sodici (albite) e naturalmente un elevato contenuto in quarzo. Si tratta di silicati di basso peso specifico (2.7-2.8 gr/cm3) e di colore tendenzialmente chiaro. Tali magmi risultano piuttosto viscosi e relativamente poco caldi (600-800 °C) per la presenza di un'elevata percentuale di silice. Consolidandosi producono rocce ignee dette anch'esse sialiche o acide o persiliciche. Le rocce sialiche vengono raggruppate in due famiglie principali, quella dei graniti (intrusive) e quella dei porfidi o rioliti (corrispondenti effusivi dei graniti). In altre parole porfidi e graniti derivano da uno stesso tipo di magma che produce rocce strutturalmente diverse in relazione alle modalità di raffreddamento.

Magmi basici o femici (silice < 52%)

Sono caratterizzati da una percentuale in silice inferiore al 52%. E' completamente assente la silice libera in grado di cristallizzarsi in quarzo. Sono invece presenti soprattutto silicati di Ferro e Magnesio (da cui il termine "femico" o "mafico" con cui sono indicati), come gli anfiboli, i pirosseni, le olivine e i plagioclasi calcici (anortite). Si tratta di minerali pesanti (3.2-3.3 gr/cm3) e di colore tendenzialmente scuro. Tali magmi risultano piuttosto fluidi e sono caratterizzati da temperature relativamente alte (intorno ai 1200 °C). Consolidandosi producono due famiglie di rocce ignee, dette anch'esse basiche o femiche o iposiliciche. Ricordiamo i gabbri (intrusive) ed i loro corrispondenti effusivi, i basalti. Esistono anche delle rocce dette ultrafemiche costituite quasi completamente da olivina (detta anche perìdoto), con un contenuto in silice inferiore al 45%. Sono le peridotiti (intrusive) ed i loro corrispondenti effusivi, le picriti.

Magmi intermedi o neutri (silice 52% - 65%)

Sono caratterizzati da una percentuale di silice compresa tra il 65% ed il 52%. Hanno una costituzione mineralogica intermedia tra le due precedentemente descritte con una prevalenza di plagioclasi sodico-calcici. Consolidandosi producono rocce ignee dette anch'esse neutre o mesosiliciche. Ricordiamo le dioriti ed i loro corrispondenti effusivi, le andesiti.

 

 

 

 

 

 

 

 

 

 

 

Approfondimento

Lo schema a sinistra permette di ottenere la composizione mineralogica percentuale per le principali famiglie di rocce ignee.


Lo schema è relativo alle rocce ignee più diffuse, appartenenti alla cosiddetta serie alcali-calcica (o calcalcalina). E' infatti possibile classificare le rocce ignee in funzione del rapporto tra silice ed ossidi alcalini e alcalino terrosi in due serie magmatiche principali: alcali-calcica e alcalina. Uno stesso magma può infatti produrre (per processi di differenziazione magmatica di cui parleremo successivamente) rocce diverse per contenuto in silice, ma con un rapporto relativamente costante tra silice ed ossidi alcalini e alcalino terrosi. La serie calcalcalina presenta un rapporto silice/ossidi alcalini più elevato rispetto alle rocce appartenenti alla serie alcalina.
Quando in una roccia ignea  il rapporto tra ossidi alcalini (K2O Na2O) e la silice (SiO2) supera un certo valore, nella roccia non si formano feldspati, ma feldspatoidi. Le rocce magmatiche appartenenti alla serie alcalina sono dunque sottosature in silice e hanno tutte la caratteristica di non presentare silice libera sotto forma di quarzo.
Nel 1967 Streckeisen ha proposto un metodo di classificazione modale delle rocce ignee, accettato dall'Unione Internazionale delle Scienze Geologiche (IUGS - International Union of Geological Sciences), fondato sulla % in volume di quarzo (Q), dei feldspati alcalini (A) dei plagioclasi (P), dei feldspatoidi (F) dei minerali colorati o femici o mafici (M) presenti in una roccia.
Se una roccia ignea presenta una percentuale di minerali colorati superiore al 90% (Indice di colore - IC > 90) viene classificata come ultrafemica (ultramafiti). Le ultramafiti vengono poi classificate in funzione del minerale femico predominante (pirosseniti, peridotiti etc).
Se la percentuale dei minerali colorati è inferiore al 90% si valutano le percentuali relative degli altri minerali, riportate a 100. Tenendo però presente che quarzo (Q) e feldspatoidi (F) non sono mai presenti contemporaneamente in una stessa roccia ignea, sarà sufficiente valutare le percentuali dei minerali del gruppo QAP o, alternativamente, FAP.
La classificazione si effettua quindi entrando in un diagramma doppio-triangolare o nel settore superiore o nel settore inferiore. A titolo di esempio riportiamo qui a destra il triangolo superiore che permette di classificare rocce prive di feldspatoidi.  Le tre linee tratteggiate individuano un granito che, tolti i minerali femici descritti attraverso il suo indice di colore, presenta un 40% di feldspati alcalini, un 50% di quarzo ed un 10% di plagioclasi.

I tre tipi di magmi precedentemente descritti non formano rocce in modo uniforme all'interno della crosta terrestre. Mentre infatti le rocce caratterizzate da chimismo intermedio sono pochissimo rappresentate e si producono in situazioni geologiche particolari, le rocce acide costituiscono la maggior parte delle rocce intrusive (circa il 95% del totale) mentre i magmi basici più fluidi, arrivano più facilmente in superficie, formando il 90-95% delle rocce effusive. La loro distribuzione risulta inoltre diversa. Mentre i graniti formano la maggior parte della crosta continentale andando a costituire enormi corpi intrusivi detti plutoni, i basalti formano immense colate che costituiscono la crosta oceanica.  Spiegare la difforme distribuzione delle rocce ignee e la genesi del magma dal quale si sono formate costituisce uno dei problemi maggiormente dibattuti dai geologi e non ancora completamente risolto. Presupposto ad ogni tentativo di interpretazione sono gli studi condotti in laboratorio sulle modalità di solidificazione del magma.

 

Differenziazione magmatica: serie di Bowen

Le prime ricerche, ancor oggi fondamentali, sui processi di raffreddamento e cristallizzazione di un magma furono condotte a partire dal 1915 da N.L Bowen nel laboratorio di geofisica di Washington. Bowen scoprì che quando un magma viene raffreddato solidificano per primi i minerali femici, caratterizzati da un più elevato punto di fusione, mentre i silicati tipici delle rocce acide solidificano per ultimi. Il processo è detto di cristallizzazione frazionata.  Durante il processo di solidificazione il magma è dunque formato da una frazione solida (più basica del magma di partenza), immersa in una frazione liquida detta fuso, (più acida del magma iniziale). Bowen dimostrò inoltre che se i minerali che cristallizzano per primi rimangono a contatto con il fuso, mentre la temperatura scende, essi reagiscono nuovamente con i componenti del fuso per dare un minerale diverso, stabile alle nuove condizioni di temperatura. In tal modo al decrescere della temperatura la composizione mineralogica della frazione solidificatasi del magma cambia, per adattarsi alle mutate condizioni termodinamiche. Tale processo è detto differenziazione magmatica. In definitiva la differenziazione magmatica si attua mediante una serie di reazioni attraverso le quali  i minerali formatisi a temperatura superiore e non più in equilibrio chimico-fisico con la massa liquida circostante, vengono sostituiti da minerali diversi, stabili a temperature più basse.  Bowen individuò due serie di reazioni che avvengono nel magma contemporaneamente ed in modo indipendente l'una dall'altra e che comportano entrambe la sostituzione di minerali basici (silicati di metalli alcalino-terrosi (Ca e Mg) e di ferro) con minerali acidi (silicati di metalli alcalini (K e Na)).

Serie discontinua

Chiamata così perché si producono famiglie di silicati differenti. Dapprima cristallizzano i minerali femici, come l'olivina. Poi questa reagisce con il fuso per dare origine ai piròsseni e, con processo analogo  si formano gli anfiboli e la mica nera (biotite). I silicati che si formano a temperature inferiori, come gli anfiboli e le miche, inglobano nella loro struttura ossidrili, gruppi chimici che non sono stabili ad elevate temperature.

Serie continua

Chiamata così perché si producono silicati appartenenti alla sola famiglia dei plagioclasi (serie isomorfa). Inizialmente si formano i plagioclasi basici, ricchi di Ca (metallo alcalino-terroso), come l'anortite. Poi, a temperature più basse si formano plagioclasi contenenti, oltre al calcio, percentuali via via più elevate di sodio (plagioclasi sodico-calcici). Finché, alle temperature più basse, si formano solo i plagioclasi di Na (metallo alcalino) come l'albite.

Genesi ed evoluzione del magma: magma primario e magma anatettico

Il processo di differenziazione descritto dalle serie di Bowen ci permette dunque di avanzare alcune ipotesi sull'evoluzione dei corpi magmatici. Possiamo infatti presumere che un magma basico sia in grado di evolversi fino a produrre una roccia sialica, mentre non è possibile per un magma acido produrre una roccia femica. Molto schematicamente possiamo ipotizzare che nel caso in cui un magma basico si raffreddi rapidamente esso genererà una roccia la cui composizione chimica rispecchierà quella del magma da cui deriva. Nel caso in cui  viceversa il raffreddamento avvenga lentamente il magma potrà subire, per cause diverse, fenomeni di frazionamento che, separando la parte solida più basica dal fuso più acido, permetterà a quest'ultimo di generare rocce sialiche.
La differenziazione in senso acido non avviene solo per il frazionamento di un magma in via di raffreddamento. Secondo i geologi altrettanto importante dovrebbero essere i processi anatettici di fusione parziale di una roccia (anatessi = processo di fusione di una roccia all'interno della crosta). Infatti quando una roccia raggiunge per cause diverse (aumento di temperatura, diminuzione di pressione, presenza di acqua) il punto di fusione, i primi minerali a fondere sono quelli acidi. Se il primo fuso acido che si forma viene separato dal resto dei minerali altofondenti basici esso, raffreddando, può produrre una roccia sialica.
In relazione alla loro genesi i geologi distinguono essenzialmente due tipi di magmi: magma primario e magma anatettico.
Secondo tale distinzione il magma primario o peridotitico, fonte prima di tutti i diversi tipi di magma, è costituito dal magma ultrafemico che compone la parte più superficiale del mantello terrestre, a diretto contatto con la crosta terrestre sovrastante. Tale magma avrebbe subito una progressiva acidificazione fino a produrre la maggior parte delle rocce che compongono la crosta continentale. Esperienze di laboratorio hanno ad esempio confermato che il primo fuso che si ottiene dal riscaldamento della peridotite ha una composizione essenzialmente basaltica.
Le rocce che costituiscono la crosta oceanica basaltica si producono dunque grazie alla fusione parziale della peridotite superficiale del mantello, che alimenta una lenta ma continua emissione di magma femico in corrispondenza di grandi fratture della crosta oceanica, dette dorsali. Tale magma, estremamente caldo e fluido, arriva facilmente in superficie in tali zone di frattura, andando a costituire la maggior parte delle rocce effusive.
Il magma anatettico si formerebbe invece per fusione parziale dei componenti bassofondenti sialici delle rocce che costituiscono la crosta continentale. Tale magma, fortemente viscoso per la bassa temperatura (600 - 800°C) e per la forte presenza di silice, tende a muoversi con difficoltà, raffreddandosi in loco con formazioni di plutoniti. Si tratta naturalmente di una schematizzazione piuttosto rigida che ammette numerose varianti ed eccezioni, ma che ha il pregio di giustificare in modo semplice il fatto che la maggior parte delle rocce effusive sia femica, mentre le rocce intrusive sono per lo più acide.
Magmi sintettici o ibridi, formatisi per contaminazioni dei due magmi precedenti sono rari e localizzati in zone geologiche particolari.

 

Le rocce sedimentarie

Ricoprono buona parte della superficie terrestre (75% circa), formando tuttavia uno strato estremamente sottile. Le rocce sedimentarie si formano dall'accumulo, dalla compattazione e dalla successiva cementificazione di materiale incoerente di origine prevalentemente inorganica, in ambiente quasi sempre subacqueo. In alcuni casi durante la compattazione si producono modificazioni chimiche del sedimento che può in tal modo modificare in parte la sua composizione mineralogica, attraverso un processo detto di metasomatismo. La classificazione più semplice delle rocce sedimentarie si fonda sulla natura e sull'origine del materiale che costituisce il sedimento, distinguendole in clastiche o detritiche, di deposito chimico e organogene.

 

Rocce sedimentarie clastiche o detritiche

Le rocce detritiche si producono per degradazione o alterazione di rocce preesistenti, con formazioni di frammenti rocciosi, detti clasti. Nel processo di formazione di tali rocce si distinguono tipicamente 5 fasi, delle quali le ultime due sono comuni anche agli altri tipi di rocce sedimentarie:
degradazione  erosione  trasporto  sedimentazione  diagenesi.

Degradazione o alterazione di una roccia preesistente

Consiste in un complesso di fenomeni fisici e chimici legati per la maggior parte alla presenza degli agenti atmosferici. Quando per cause diverse rocce che si sono formate in profondità vengono in  superficie, si trovano esposte a condizioni chimico-fisiche completamente diverse da quelle in cui si sono formate. E' perciò naturale che molti minerali che le compongono non siano più stabili e subiscano una serie di modificazioni che tendono ad adattarli alle nuove condizioni termodinamiche.
Si è soliti distinguere i fenomeni di degradazione di tipo chimico da quelli di tipo fisico, anche se le rocce sono sottoposte ad entrambi contemporaneamente.

Fenomeni di degradazione fisica

  • Il crioclastismo rappresenta lo sgretolamento della roccia causato dall'aumento di volume (9%) dell'acqua che congela nei pori e nelle fessure della roccia.
  • Il termoclastismo costituisce lo sgretolamento della roccia in conseguenza di forti sbalzi termici che provocano continue dilatazioni e contrazioni differenziali tra le zone più superficiali e quelle profonde, e tra i minerali a diverso coefficiente di dilatazione.
  • L'aloclastismo è un'alterazione della roccia legata alla formazione ed alla crescita di cristalli salini nelle fessure rocciose, depositati dal processo di evaporazione dell'acqua in cui si trovavano in soluzione.
  • Le rocce argillose o contenenti argilla sono sottoposte a continue dilatazioni e contrazioni che tendono a frantumarle, quando i minerali argillosi assorbono acqua (adsorbimento) e la riperdono (essicazione), variando di conseguenza il loro volume.

 

Fenomeni di degradazione chimica

  • Idrolisi  - Poichè i silicati possono essere considerati sali formati da un acido debole (l'acido ortosilicico) e da ioni metallici provenienti da basi forti (metalli alcalini e alcalino-terrosi), in soluzione acquosa presentano un certa tendenza a produrre idrolisi basica. Il processo porta alla separazione degli idrossidi metallici (NaOH, KOH, Ca(OH)2, Mg(OH)2) dagli idrosilicati di alluminio, che sono acidi molto deboli. Poiché questi ultimi  costituiscono in pratica i minerali argillosi il processo è detto di argillificazione. Dall'argillificazione dei feldspati si libera il quarzo eventualmente presente nella roccia, il quale è stabile e rimane inalterato sotto forma di minuscoli cristalli che conservano il loro aspetto vitreo e trasparente e che vanno a costituire la frazione silicea del terreno, particolarmente abbondanti nei terreni sabbiosi. In seguito gli idrossidi possono eventualmente reagire con l'anidride carbonica sciolta nell'acqua per dare carbonati e bicarbonati (KOH + CO2 Þ  KHCO3). Nei terreni sottoposti a forte dilavamento ed in climi molto caldi il processo di argillificazione può procedere ulteriormente con la decomposizione anche dei minerali argillosi in idrossidi insolubili di Alluminio (bauxite - Al2O3*nH2O) e di Ferro (limonite - Fe2O3*nH2O ed ematite -Fe2O3), che possono formare vasti depositi conferendo al terreno un colore bruno rossiccio o giallastro (suoli lateritici).  Ad esempio la caolinite (principale fillosilicato del caolino) può trasformarsi in gibbsite (o idrargillite - Al(OH)3), uno dei minerali che compongono la bauxite.

  • Idratazione - Alcuni minerali sono in grado di legarsi con deboli legami polari all'acqua, la quale viene incorporata come costituente in un nuovo reticolo cristallino.  Così l'anidrite (CaSO4) si trasforma in gesso (CaSO4*2H2O), l'ematite in limonite. L'idratazione porta naturalmente ad un aumento del volume dei minerali.
  • Ossidazione - L'ossigeno atmosferico è in grado di ossidare parecchi ioni metallici. Ad esempio il ferro ferroso (Fe2+) in ferro ferrico (Fe3+), lo Zolfo 2- in  Zolfo 4+ (o Zolfo 6+). L'ossidazione riveste particolare interesse proprio nel caso dello Zolfo e del Ferro, trasformando sali insolubili come i solfuri di Ferro in composti solubili come i solfati o parzialmente solubili come gli ossidi di ferro. Un esempio di ossidazione si ha nell'alterazione lateritica a carico dei silicati ferrosi (olivine e pirosseni):
  • Solubilizzazione - Alcuni minerali possono essere portati in soluzione dall'acqua pura (NaCl, CaSO4, CaSO4*2H2O), altri, come il carbonato di Calcio (CaCO3) vengono sciolti dall'acqua contenente CO2. La CO2 reagisce infatti con l'acqua per dare acido carbonico, il quale, a sua volta reagisce con il carbonato di calcio per dare bicarbonato di calcio, sale solubile in acqua. Quest'ultimo è un processo che assume proporzioni impressionanti a carico di rocce interamente calcaree, dando luogo al fenomeno del carsismo., dove corsi d'acqua sotterranei sono in grado di scavarsi un letto tra le rocce formando caverne e grotte per chilometri.

H2CO3     +     CaCO3   Þ  Ca(HCO3)2

Erosione

Una volta che la roccia è stata alterata i frammenti rocciosi possono essere erosi o rimossi ad opera degli agenti geomorfologici. Con tale termine si indicano tutti quegli agenti in grado di modificare l'aspetto della superficie terrestre come il vento, le precipitazioni, i corsi d'acqua, il moto ondoso e le correnti marine, i ghiacciai e la stessa gravità. Naturalmente l'erosione avviene più facilmente sulla roccia già degradata, ma può avvenire, anche se con maggior difficoltà e lentezza anche su rocce non degradate.

Trasporto dei clasti

Una volta rimossi, i frammenti rocciosi vengono trasportati dagli stessi agenti responsabili del processo erosivo per tratti più o meno lunghi. I maggiori responsabili del trasporto dei clasti sono senz'altro i corsi d'acqua, dove i frammenti rocciosi possono essere portati per lo più in sospensione.

 

Sedimentazione

Quando la forza di trasporto diminuisce o cessa, i frammenti rocciosi  si depositano, o meglio, sedimentano. Come abbiamo già detto la maggior parte della sedimentazione avviene in ambiente subacqueo.
In genere sedimentano per primi i clasti di dimensioni maggiori e poi, via via quelli più piccoli. Il processo di sedimentazione produce strati di sedimenti, spesso con caratteristiche diverse, per struttura, colore e a volte anche per composizione chimica. La stratificazione è una caratteristica peculiare delle  rocce sedimentarie, che le rende facilmente distinguibili dalle altre rocce.
Inoltre assieme ai clasti si mescolano inevitabilmente resti di organismi morti che spesso si conservano all'interno della roccia come fossili. Solo le rocce sedimentarie presentano fossili.
L'analisi delle caratteristiche litologiche (tipo e struttura dei sedimenti) e paleontologiche (tipo di fossili) permette di risalire all'ambiente di sedimentazione (marino, fluviale, morenico, costiero, desertico etc) e spesso anche alle condizioni climatiche in cui è avvenuta la sedimentazione  (ad esempio climi aridi possono produrre arenarie ed evaporiti, climi umidi sono testimoniati dalla presenza di carbone).

Diagenesi o Litificazione

La semplice sedimentazione di materiale incoerente non è in grado di produrre una roccia. Sono necessari dei processi di costipamento e di cementazione dei clasti, che producono la vera e propria litificazione, il passaggio cioè da un materiale sciolto ad una struttura rocciosa.
Il costipamento consiste nella progressiva diminuzione di volume degli strati più profondi per compressione da parte dei sedimenti che si vanno via via accumulando in superficie.
La cementazione consiste nella precipitazione dei sali disciolti nell'acqua che impregna i sedimenti, man mano che questa viene eliminata dal processo di costipamento. Si tratta quasi sempre di CaCO3 e di SiO2, che si depositano tra gli interstizi saldando insieme i clasti. In alcuni casi, durante il processo di diagenesi si possono produrre delle vere e proprie reazioni chimiche tra i sali disciolti nell'acqua e i minerali che compongono i clasti con formazione di nuovi composti chimici. Tale processo è noto come metasomatismo. Un tipico esempio di metasomatismo è dato dalla formazione delle Dolomiti. La dolomia, il minerale di cui sono composte, è infatti un carbonato doppio di calcio e magnesio (CaMg(CO3)2) formatosi a partire da sedimenti calcarei di origine organica (gusci di molluschi) per apporto di Mg presente nell'acqua marina.

 

Classificazione delle rocce clastiche

La classificazione delle rocce clastiche si basa sulla dimensioni dei clasti e non sulla loro composizione chimica. In esse si possono trovare una gran varietà di minerali, ma i principali costituenti sono i minerali argillosi ed il quarzo, entrambi provenienti  dall'alterazione chimica dei silicati ed il calcare.

Le ruditi (o psefiti)

sono costituite da clasti con dimensioni superiore ai 2 mm. Le ruditi sono spesso indicate con il nome di conglomerati. Se i clasti che li formano possiedono spigoli vivi, i conglomerati sono detti brecce. Se invece sono stati arrotondati dall'azione del trasporto fluviale o glaciale sino a diventare ghiaie, i conglomerati che ne derivano prendono il nome di puddinghe (dall'inglese pudding = budino).

Le areniti o arenarie (o psammiti)

 sono composte da clasti le cui dimensioni sono comprese tra 1/16 di mm e 2 mm, le dimensioni tipiche della sabbia. Le areniti costituite prevalentemente di granuli di quarzo sono dette quarzareniti. Nel caso siano presenti in quantità rilevante anche altri minerali si parla di calcareniti, grovacche (se è presente anche argilla) e arcose (se è presente feldspato).

 

Le peliti (o lutiti)

sono costituite da granuli di dimensioni inferiori ad 1/16 di mm. Si dividono in siltiti (silt = limo, melma) con granuli compresi tra 1/16 e 1/256 di mm e argilliti , con granuli inferiori ad 1/256 di mm. Le peliti sono costituite per lo più da minerali argillosi (su buona parte dei fondali oceanici si depositano solo argille).
Quando un'argillite contiene una quantità di calcare compreso tra il 35% ed il 65% viene detta marna. Le marne venivano un tempo estratte e macinate per produrre cemento (oggi si mescolano argilla e calcare nella quantità desiderata).

Il diametro dei sedimenti condiziona la velocità di sedimentazione. Così i clasti più grossolani vengono trasportati solo da acque  a carattere torrentizio, da frane o da ghiacciai, mentre le sabbie possono essere trasportate anche dal vento o da acque fluviali. Argille e silt rimangono in sospensione a lungo e decantano con estrema lentezza solo quando l'acqua è perfettamente calma. Così i sedimenti più grossolani sedimentano prima, mentre quelli più fini arrivano a sedimentare solo nelle calme acque dei laghi, delle paludi o in mare aperto.

 

Piroclastiti

Le rocce piroclastiche o piroclastiti vengono comunemente classificate come rocce detritiche, anche se non derivano da processi di degradazione di rocce preesistenti, ma dall'accumulo in ambiente subaereo o subacqueo di polveri e lapilli vulcanici.  Tra le più tipiche piroclastiti vi sono i tufi.

Rocce sedimentarie di deposito chimico

Si formano per precipitazione chimica di sostanze disciolte nelle acque. Le cause della precipitazione possono essere diverse. Tra le più frequenti vi è l'evaporazione dell'acqua che, eliminando il solvente, aumenta la concentrazione dei soluti fino a raggiungere il punto di saturazione, il raffreddamento delle acque termali che produce una diminuzione nella solubilità dei sali (la solubilità dei sali aumenta all'aumentare della temperatura).
Quando i sali disciolti nell'acqua iniziano a precipitare, per evaporazione o per raffreddamento dell'acqua, si depositano sempre con una certa successione che dipende dalla diversa solubilità.
Il carbonato di calcio è il primo sale a precipitare, seguito dal gesso, dall'anidrite, dal cloruro di sodio e dal cloruro di K.
Essendo poco solubile e precipitando per primo il carbonato di calcio forma la maggior parte delle rocce di deposito chimico.
Nelle acque costiere dei mari caldi, surriscaldate dal sole, può precipitare formando minuscole sferette calcaree, dette ooliti o pisoliti (se di dimensioni maggiori), la cui forma è forse causata dai moti di rotolamento sul fondo durante il processo di accrescimento. In ambiente continentale rocce calcaree di deposito chimico si formano facilmente quando l'acqua proveniente da sorgenti termali si raffredda. Tipiche concrezioni calcaree spugnose si producono inoltre dalla nebulizzazione dell'acqua in corrispondenza di cascate. Ne è un esempio il travertino (lapis tiburtinus = pietra di Tivoli), un calcare bianco cariato prodottosi milioni di anni fa dalle cascate dell'Aniene ed utilizzato per costruire la maggior parte dei monumenti romani. Appartiene ai calcari di deposito chimico anche l'alabastro calcareo che si produce per deposizione dall'acqua satura di bicarbonato che gocciola dalle pareti delle grotte, formando vari tipi di concrezioni tra cui le stalattiti (sul tetto) e le stalagmiti (sul pavimento). Quando in un bacino poco profondo l'acqua evapora completamente o quasi completamente oltre al carbonato precipitano anche tutti gli altri sali secondo la sequenza già vista, detta serie evaporitica. Tali rocce sono dette evaporiti. I giacimenti evaporitici hanno una certa importanza economica perché sono spesso fonte di sali potassici utilizzabili come concimi.
Anche la silice, in soluzione in acque marine, può precipitare chimicamente producendo selci di deposito chimico, come il calcedonio e l'opàle. Possono infine essere considerate rocce di deposito chimico anche quelle prodotte dall'alterazione chimica dei silicati presenti in rocce ignee o metamorfiche, con produzione di argilliti, bauxiti, lateriti etc. Quando tali sedimenti rimangono in loco e non vengono asportati, sono classificati come rocce residuali.

 

Rocce sedimentarie organogene

Sono rocce formatesi in seguito all'attività di organismi viventi. La gran parte di queste rocce si forma in ambiente marino. Qui vivono un gran numero di specie animali e vegetali in grado di estrarre dall'acqua del mare calcare o silice, che utilizzano per la costruzione di scheletri e rivestimenti (gusci e conchiglie). Alla loro morte, mentre la sostanza organica va rapidamente in decomposizione, le loro strutture di sostegno possono facilmente depositarsi ed accumularsi producendo sedimenti in grado di litificare.
I più diffusi sono senz'altro i calcari organogeni.

Calcari organogeni

Tra questi ricordiamo i calcari organogeni neritici che si formano in acque basse (ambiente neritico) per l'attività di esseri viventi benthonici (benthos = esseri viventi fissi sul fondo o in grado di eseguire piccoli movimenti). Tipici sono gli accumuli di gusci di molluschi che spesso rimangono in parte ancora visibili all'interno della roccia (calcare fossillifero) e i calcari di scogliera, prodotti dall'attività costruttrice di celenterati (coralli e madrepore) che vivono fissati alle scogliere. Delle trasformazioni metasomatiche di alcuni di questi calcari in dolomie abbiamo già detto. Meno frequenti sono i calcari organogeni pelagici che si formano in acque profonde (ambiente pelagico) per la sedimentazione dei microscopici gusci calcarei di organismi planctonici (plancton = esseri viventi, per lo più unicellulari che vivono in sospensione, trasportati passivamente dall'acqua), quali i foraminiferi (protozoi unicellulari).

 

Selci organogene

Si formano per lo più in ambiente pelagico  per l'accumulo dei resti silicei di organismi plantonici come i radiolari (protozoi unicellulari) e le diatomee (alghe unicellulari). Selci organogene si possono formare anche per l'accumulo degli scheletri silicei di alcune spugne (poriferi). In genere le selci organogene si trovano a formare straterelli all'interno di rocce calcaree.

Fosforiti

Le fosforiti sono rocce costituite prevalentemente da fosfati, mescolati spesso con calcare, che derivano dall'accumulo di resti scheletrici di vertebrati o da enormi depositi di escrementi (copròliti) di uccelli marini (guano del Perù e del Cile) che contengono anche nitrati e sono utilizzati come concime.

Carbone e petrolio

In condizioni particolari la sostanza organica può conservarsi e concentrarsi in grandi accumuli producendo dei depositi che possono in ultima analisi essere considerati vere e proprie rocce organogene. I vari tipi di carbone, ad esempio, si producono a partire da grandi masse di organismi vegetali sepolte, dopo la loro morte, in paludi ed acquitrini. L'acqua stagnante povera di ossigeno sottrae la materia organica alla decomposizione aerobia (ossidazione). In queste condizioni la materia organica subisce una serie di trasformazioni chimiche sostenute dall'attività di organismi anaerobii che la impoveriscono gradualmente di ossigeno ed idrogeno, senza intaccare i legami C-C ricchi di energia. La cellulosa, costituita da molte molecole di glucosio (C6H12O6), aumenta in tal modo la sua percentuale relativa di carbonio, trasformandosi lentamente in carbone.

                                   cellulosa  Þ  torba  Þ  lignite  Þ  litantrace  Þ  antracite

I diversi tipi di carbone rappresentano stadi evolutive diversi, caratterizzati da una percentuale di carbonio via via maggiore e quindi da poteri calorici via via più elevati.
Un altro esempio è dato dal petrolio e dalle sostanze ad esso affini (asfalti, bitumi, metano etc), le quali si ritiene prendano origine in acque costiere marine (vaste lagune e golfi protetti dal moto ondoso) dove è scarsa la circolazione idrica e limitato il ricambio di ossigeno, mentre è notevole l'apporto di sedimenti in sospensione da parte dei fiumi.
In tali condizioni, i numerosissimi organismi animali e vegetali che vivono in tali zone, alla loro morte, si depositano sul fondo e vengono rapidamente seppelliti dai sedimenti e sottratti alla decomposizione. Con il tempo i processi di alterazione anaerobia trasformano lentamente tale sostanza organica in idrocarburi. Affinché si formi il petrolio (naftogenesi) è necessario che i sedimenti organici vengano seppelliti da almeno 1000 - 1500 m di spessore, venendosi a trovare a temperature e pressioni piuttosto elevate. Una volta formatisi gli idrocarburi tendono a migrare verso l'alto, filtrando attraverso rocce porose (calcari fessurati e arenarie). La risalita può essere però ostacolata dalla presenza di eventuali strati rocciosi impermeabili (argille, marne) che intrappolano così gli idrocarburi nelle sottostanti rocce permeabili. Tali rocce impregnate di idrocarburi si dicono rocce serbatoio, mentre le rocce sovrastanti sono dette rocce di copertura.

 

Le rocce metamorfiche

Le rocce metamorfiche derivano da cambiamenti nella composizione chimica e nella struttura di rocce preesistenti quando queste vengono sottoposte a drastiche modificazioni nelle condizioni di temperatura e/o pressione. Una roccia è sempre costituita da un'associazione di minerali stabili alle condizioni di temperatura e di pressione alle quali la roccia si è formata. Se essa viene sottoposta a condizioni termobariche differenti i suoi minerali tendono a modificarsi verso una nuova associazione mineralogica  in equilibrio con le nuove condizioni di temperatura e pressione.
Nella maggior parte dei casi il metamorfismo interessa masse rocciose superficiali, formatesi in condizioni di temperatura e pressione ordinarie, che, sepolte sotto migliaia di metri di sedimenti, vengono sottoposte ad un aumento di temperatura e di pressione. In questo caso il metamorfismo si dice prògrado. Nei rari casi in cui una roccia sia sottoposta a temperature inferiori a quelle che hanno caratterizzato il suo processo di formazione, il metamorfismo si dice retrògrado.

Il metamorfismo comporta una riorganizzazione degli atomi all'interno dei diversi minerali con formazione di nuove specie chimiche e con la produzione, qualora inizialmente assente, di una struttura cristallina. Tutte queste modificazioni avvengono però senza che la roccia  passi allo stato fuso, nel qual caso si produrrebbe una nuova roccia magmatica. La ricristallizzazione metamorfica è facilitata dalla presenza di acqua e di composti allo stato aeriforme in genere.

 

La temperatura ed il grado metamorfico

I fenomeni metamorfici richiedono comunque che la roccia raggiunga temperature minime di 100° - 150°C. All'aumentare della temperatura aumenta anche il grado metamorfico e, naturalmente, il grado di ricristallizzazione della roccia.

                                               Bassissimo grado                   200 - 350°C
Basso grado                           350 - 500°C
Medio grado                          500 - 650°C
Alto grado                              650 - 800°C
Altissimo grado                        > 800 °C

Nel metamorfismo di altissimo grado o ultrametamorfismo l'aumento di temperatura è tale da arrivare alla fusione parziale della roccia. In questo caso la frazione mineralogica più acida della roccia metamorfica fonde per prima con formazione di un fuso acido che contiene frammenti solidi più basici della roccia di partenza. Se, come spesso accade, il fuso acido che si forma raffredda in loco, si produce una roccia formata da porzioni di roccia metamorfica rimasta solida (paleosoma) e porzioni di roccia ignea appena formatasi (neosoma). A tali rocce miste si è dato il nome di migmatiti. Esse presentano spesso venature bianche parallele o chiazze bianche di neosoma sul paleosoma più scuro. L'ultrametamorfismo sfocia nell'anatessi, con formazione di un magma anatettico e non è sempre facile distinguere nettamente i due fenomeni

 

L’azione della pressione: la scistosità

La pressione che agisce sulle rocce può presentare due componenti:

  • una pressione di carico esercitata dal peso delle rocce sovrastanti, il cui valore dipende naturalmente dalla densità delle rocce. Si assume in genere per il gradiente barico un valore intorno a 25 - 30 Kg/cm2 ogni 100 m di profondità. La pressione di carico è di tipo idrostatico. Ciò significa che essa agisce sulle rocce in tutte le direzioni (principio di Pascal).
  • una pressione orientata esercitata dai movimenti crostali orizzontali responsabili dei fenomeni orogenetici. Tale pressione, agendo in una direzione determinata, è in grado di condizionare la tessitura della roccia metamorfica che si sta formando. Questo avviene quando la roccia di partenza è costituita da minerali come le miche, gli anfiboli ed i pirosseni che possono cristallizzare in lamine o aghetti. Durante il processo di cristallizzazione di tali minerali, questi si dispongono prevalentemente in direzioni ortogonali al vettore pressione cui sono sottoposti e tra loro paralleli. Si formano così delle striature colorate  (superfici di scistosità) che danno un aspetto caratteristico a molte rocce metamorfiche. La roccia assume in tal caso una tipica struttura scistosa.

Tipi di metamorfismo

Le rocce metamorfiche possono derivare oltre che da altre rocce metamorfiche, anche da rocce sedimentarie (para-metamorfiti) e da rocce ignee (orto-metamorfiti). Si distinguono 4 tipi di metamorfismo: di carico, regionale, di contatto (o termico), dinamico (o cataclastico).

Metamorfismo di carico

Si produce quando masse rocciose sprofondano entro la crosta terrestre subendo un aumento di pressione per il peso dei sedimenti sovrastanti e di temperatura che cresce con la profondità, secondo il gradiente geotermico (3° ogni 100 m). Se le rocce che sprofondano sono sedimentarie, si passa gradualmente dalla diagenesi al metamorfismo di basso grado e non sempre è possibile fare una distinzione netta tra i due fenomeni.

Metamorfismo regionale

E' legato ai grandi movimenti crostali ed è tipico delle zone dove due frammenti di crosta terrestre si scontrano e si corrugano a formare montagne. All'interno ed in profondità nelle catene montuose vi sono grandi estensioni di rocce metamorfiche.

Metamorfismo di contatto o termico

Si produce quando le rocce si trovano in contatto con intrusioni magmatiche. Le rocce circostanti (rocce incassanti) subiscono un aumento di temperatura a causa del calore emanato dal magma che si raffredda. In tal modo le intrusioni ignee sono sempre circondate da aureole di rocce metamorfiche (contattiti) il cui grado metamorfico diminuisce man mano che ci allontaniamo dal corpo magmatico.

Metamorfismo dinamico o cataclastico

Si produce in corrispondenza di grandi fratture della crosta terrestre (faglie), dove due frammenti crostali si spostano parallelamente con verso opposto. Lungo la superficie di contatto (superficie di faglia) tra le due masse rocciose in scorrimento reciproco l'attrito libera enormi quantità di calore. Le rocce vengono frantumate e profondamente alterate. Si formano rocce metamorfiche tipiche chiamate miloniti.

Metamorfismo termico, di contatto e dinamico sono fenomeni molto frequenti, ma quantitativamente poco significativi. Essi generano infatti solo una piccola percentuale delle rocce metamorfiche, la gran parte delle quali si produce invece in conseguenza dei fenomeni tettonici collegati al metamorfismo regionale.

 

Classificazione delle rocce metamorfiche

La classificazione delle rocce metamorfiche è piuttosto complessa e non ha trovato ancora l'accordo di tutti gli specialisti.  In generale essa tiene conto sia del tipo di rocce di partenza che delle condizioni termobariche raggiunte. La classificazione è complicata dal fatto che rocce diverse possono trasformarsi in una stessa roccia metamorfica.
Una classificazione ancora molto usata è quella proposta dal petrologo finlandese Penti Eskola (1915) che raggruppa insieme in una stessa facies metamorfica rocce diverse per composizione chimica e mineralogica, ma formatesi all'interno di un medesimo intervallo termobarico. Ciascuna facies è definita da particolari e caratteristiche associazioni di minerali (paragenesi),  detti minerali-indice. In altre parole ciascuna facies viene associata alla presenza di minerali caratteristici (minerali-indice), stabili a particolari condizioni termodinamiche.  Ciascuna facies prende il nome da una roccia particolarmente rappresentativa, ma comprende naturalmente rocce molto diverse per composizione chimica e mineralogica.

 

All'interno di ciascuna facies si esegue poi una classificazione in base alle caratteristiche mineralogiche della roccia. A titolo esemplificativo diamo  alcune sequenze di trasformazioni metamorfiche, facendo riferimento ad alcune rocce di partenza particolarmente diffuse.

1) Argilliti Þ Argilloscisti Þ Filladi Þ Micascisti ÞGneiss (paragneiss)
Le argilliti (formatesi in genere da miscele sedimentarie di argilla e sabbia in diverse proporzioni) al crescere del grado metamorfico si trasformano in argilloscisti, rocce compatte dalla tipica tessitura scistosa legata alla formazione di piani di minerali micacei che ne causano la sfaldabilità lungo piani paralleli. Un gruppo particolare di argilloscisti sono le ardesie, impiegate in montagna come tegole per coperture di edifici.
Al crescere del grado metamorfico le argilloscisti si trasformano in filladi, con struttura microcristallina (i cristalli non sono ancora visibili ad occhio nudo). Tutte le filladi hanno un aspetto sericeo perché la superficie di sfaldatura è sempre rivestita di miche. Se le argille di partenza contenevano una qualche percentuale di materia organica, questa, dopo aver subito un processo di carbonizzazione, cristallizza in grafite dando alle filladi un intenso colore nero. Tipiche sono le lavagne. Argilloscisti e filladi sono caratterizzate da un metamorfismo di basso grado (facies degli scisti verdi)

I Micascisti sono rocce metamorfiche scistose di medio grado in cui le miche ed il quarzo cominciano a formare cristalli visibili ad occhio nudo (facies delle anfiboliti). I micascisti si possono infine trasformare in rocce metamorfiche di alto grado con struttura cristallina perfettamente evidente, paragonabile a quella di un granito, e simili a questo come composizione mineralogica, dette gneiss (paragneiss). Negli gneiss troviamo gli stessi minerali tipici del granito (quarzo, feldspato e miche) stirati però a formare striature parallele chiare e scure (facies anfiboliti).

2) Granito  Þ  Gneiss (ortogneiss)
Il granito, e le rocce ignee acide in generale, possono trasformarsi per metamorfismo di alto grado in gneiss, spesso indistinguibili da quelli che si formano a partire da rocce pelitiche.

3) Calcari  Þ  Marmi
Il termine "marmo" è utilizzato commercialmente per indicare la maggior parte delle rocce lucidabili. In senso stretto il marmo è una roccia microcristallina a tessitura saccaroide (simile allo zucchero) derivato da calcari metamorfosati. Particolarmente pregiato è il marmo di Carrara.
Se il calcare iniziale contiene dei minerali argillosi (marne) questi si trasformano in miche producendo rocce con una tipica struttura scistosa, dette calcescisti (metamorfismo regionale) o dando luogo a rocce compatte dette calcefiri per metamorfismo di contatto.

4) Arenarie  Þ Quarziti
Le quarziti sono rocce microcristalline, non scistose, costituite quasi interamente da minuscoli cristalli di quarzo.

5) basalti Þ  scisti verdi (serpentiniti)/scisti blu    Þ  anfiboliti
Le rocce magmatiche basiche si trasformano per metamorfismo di basso grado in scisti verdi per la presenza di serpentino, un fillosilicato che dà alla roccia la tipica colorazione verde e la caratteristica tessitura scistosa e in scisti blu, per la presenza di glaucofane, un anfibolo di colore blu.
Per metamorfismo di grado medio-alto si passa poi alle anfiboliti, caratterizzate dalla presenza di un anfibolo di colore verde scuro, l'orneblenda.

5) peridotite Þ talcoscisti / serpentiniti
Le rocce ultrafemiche si trasformano per metamorfismo di basso grado in talcoscisti e serpentiniti, caratterizzati rispettivamente dalla presenza del talco e del serpentino, due fillosilicati tipicamente metamorfici.


Sismologia

 

La sismologia è la scienza che studia la genesi e le modalità di propagazione delle onde sismiche,  improvvise vibrazioni della terra note come terremoti.

 

I terremoti

Un terremoto o sisma è dunque un'oscillazione delle masse rocciose prodotta da una brusca liberazione di energia meccanica.
Le cause di un terremoto possono essere diverse. Un sisma può ad esempio accompagnare eruzioni vulcaniche, il crollo di grotte sotterranee e, ultimamente, anche esplosioni provocate artificialmente, ma la maggior parte dei sismi è di origine tettonica, legata cioè al movimento relativo dei frammenti in cui è suddivisa la porzione la crosta terrestre, le cosiddette placche crostali o zolle.
I terremoti di origine tettonica, di cui ci occuperemo, sono quindi sempre associati ad enormi sistemi di fratture o faglie che interessano la crosta terrestre e la porzione più superficiale del mantello, entrambe comprese in un'unica struttura rigida, indicata con il nome di litosfera. Sulla litosfera si esercitano forze immani che possono agire in direzioni diverse, provocando compressioni, trazioni e, più spesso, dislocazioni.

 In ogni caso, quando una forza agisce su di una roccia quest’ultima si può comportare in modo diverso in relazione all'intensità della forza, al tipo di roccia ed alla profondità alla quale si trova.

  • Se la forza è poco intensa la roccia si comporta in modo elastico, deformandosi e riprendendo la propria forma al cessare della spinta.
  • Se la forza supera una certa intensità la roccia si comporta come un corpo plastico, deformandosi in modo irreversibile.
  • Se infine la forza diventa molto intensa la roccia si comporta come un corpo rigido, fratturandosi con produzione di un piano di faglia lungo il quale avviene un movimento relativo delle due porzioni rocciose. Una volta ritrovato l'equilibrio, se le forze continueranno ad agire, i due blocchi rocciosi accumuleranno lungo il piano di faglia energia elastica. La tensione aumenta fino al punto in cui la resistenza per attrito, che immobilizza la frattura, non è più in grado di equilibrare le forze che tendono a far slittare i blocchi rocciosi ed essi scattano improvvisamente diventando il punto di origine di un terremoto. Tale punto è detto ipocentro del sisma. L'energia elastica si libera all'improvviso sotto forma di vibrazioni, dette onde sismiche, che si propagano sotto forma di superfici sferiche in espansione, concentriche ed aventi come centro l'ipocentro. Secondo stime recenti, il tempo medio di ricarica di una faglia, affinché si produca un nuovo terremoto è di 50-200 anni. In alcuni casi le faglie continuano a scivolare lentamente, producendo vibrazioni percepibili solo dagli strumenti.

La probabilità che una forza produca faglie e che in seguito si accumuli fino a produrre periodici scivolamenti dipende, a parità di intensità dal tipo di roccia e dalla profondità a cui essa agisce. Le rocce magmatiche hanno ad esempio un comportamento più rigido rispetto alla maggior parte delle rocce sedimentarie, diventando così più facilmente sedi di eventi sismici. Inoltre se una roccia si trova a profondità maggiori l'aumento di pressione e di temperatura che ne consegue tende ad accentuare progressivamente il comportamento plastico della roccia, la quale diviene così sempre più malleabile. Si ritiene che al di sotto di una certa profondità tutte le rocce evidenzino un comportamento totalmente plastico, tale da non permettere la produzione di sismi. Non si conoscono attualmente ipocentri di terremoti con profondità maggiore di circa 700 km. Il punto sulla superficie terrestre che si trova sulla verticale dell'ipocentro è detto epicentro. ed è, evidentemente, il primo punto della superficie terrestre raggiunto dalle onde sismiche.

 

Le onde sismiche

In relazione alle forze agenti sulle masse rocciose si producono a livello dell'ipocentro due tipi fondamentali di onde sismiche: onde di compressione o longitudinali e onde di taglio o trasversali.

 

Onde longitudinali

Le onde longitudinali producono sulle rocce che attraversano dei movimenti di compressione e rarefazione. In altre parole le rocce vengono sollecitate lungo la stessa direzione in cui si propaga l'onda (assomigliano in questo alle onde sonore) e le particelle vibrano avanti e indietro nella medesima direzione di propagazione. Sono le onde più rapide che raggiungono quindi per prime l'epicentro.
Per questo motivo sono indicate come onde primarie o primae o, semplicemente, onde P.
La loro velocità varia da 5,5 a 11,5 km/s, in relazione alla densità ed alla rigidità delle rocce che attraversano. Come tutte le onde longitudinali possono propagarsi sia nei solidi che nei fluidi (liquidi e gas). Come conseguenza della loro natura longitudinale le onde P sono percepite sulla superficie terrestre come onde sussultorie. Una volta giunte in superficie possono propagarsi anche attraverso l'atmosfera generando onde acustiche di frequenza, in alcuni casi, avvertibile dall'uomo sotto forma di boati. In altri casi producono onde acustiche al di sotto della soglia di udibilità umana (infrasuoni), ma percepibili da alcuni animali.

Onde trasversali

Le onde trasversali costringono le particelle rocciose a muoversi in direzioni perpendicolari rispetto alla direzione di propagazione dell'onda (assomigliano in questo alle onde elettromagnetiche).  Sono più lente rispetto alle onde longitudinali ed arrivano all'epicentro con un ritardo che dipende naturalmente dalla profondità dell'ipocentro. Anche per esse la velocità di propagazione dipende dalle caratteristiche di elasticità e di densità della roccia attraversata. A parità di caratteristiche la loro velocità e poco meno della metà delle corrispondenti onde primarie. Arrivando sempre dopo le onde primarie vengono dette onde secondarie o secundae o, semplicemente, onde S. Possono propagarsi solo nei solidi mentre la loro energia viene rapidamente assorbita dai fluidi, dove non si propagano. Questa caratteristica viene utilizzata per evidenziare la presenza di strati rocciosi allo stato fluido o plastico all'interno della terra.  Essendo la vibrazione di tali onde perpendicolare alla direzione di propagazione, tali onde vengono avvertite sulla superficie terrestre come scosse ondulatorie.

Velocità delle onde sismiche
La velocità delle onde sismiche aumenta al crescere della rigidità e diminuisce all’aumentare della densità del materiale.

  • Maggiore è la rigidità più intense sono le reazioni del materiale allo sforzo applicato. Le particelle che costituiscono il mezzo si comportano infatti come dei minuscoli oscillatori armonici e sono in tal modo soggette ad una maggiore forza di richiamo (legge di Hooke) che le costringe ad oscillare più rapidamente.
  • Maggiore è la densità (e quindi la massa di ciascun oscillatore elementare per unità di volume) e maggiore è l’inerzia del mezzo (un oscillatore di massa maggiore si mette in moto con maggior difficoltà)

L’elasticità di un mezzo omogeneo ed isotropo viene definita tramite due parametri: il modulo di incomprimibilità k ed il modulo di rigidità m. Il modulo di incomprimibilità misura l’elasticità di volume, cioè la tendenza di un corpo a subire, se sottoposto a forze di compressione idrostatica, una variazione di volume (ma non di forma). Il modulo di rigidità misura l’elasticità di forma, cioè la tendenza di un corpo a subire, se sottoposto a forze di taglio  (una coppia di forze uguali e contrarie che agiscano tangenzialmente), una variazione di forma (ma non di volume).
Se r è la densità del mezzo, la velocità di propagazione delle onde longitudinali VL e trasversali VT è rispettivamente.
Per i liquidi m = 0 e quindi la velocità delle onde trasversali in essi è nulla.

 

Le onde di superficie

L'interazione delle onde P ed S con la superficie terrestre produce un terzo tipo fondamentale di onde, dette onde superficiali o lunghe o, semplicemente, onde L. Le onde L partono dall'epicentro con una velocità che risulta circa il 90% di quella delle onde S ed arrivano perciò ai sismografi per ultime.
Vi sono due tipi principali di onde superficiali: le onde di Love e le onde di Rayleigh.

Onde di Love

Le onde di Love muovono il suolo orizzontalmente, parallelamente alla superficie terrestre, ma perpendicolarmente alla direzione di avanzamento dell'onda. Sono dunque onde superficiali trasversali.

Onde di Rayleigh

Le onde di Rayleigh muovono il suolo come le particelle d'acqua all'interno di un'onda marina secondo orbite ellittiche, aventi l'asse maggiore parallelo alla direzione di propagazione e quello minore  perpendicolare alla superficie terrestre.

 

Fenomeni di rifrazione e riflessione

Per poter visualizzare graficamente le onde sismiche che si formano nell'ipocentro si usa riunire in una superficie (superficie d'onda o fronte d'onda) tutti i punti che ad un certo istante si presentano con la medesima fase. La propagazione delle onde viene rappresentata mediante il movimento espansivo di tali superfici d'onda. La direzione di propagazione delle onde in ciascun punto della superficie coincide con la normale alla tangente alla superficie in quel punto ed individua i raggi sismici. Le onde sismiche nascono dall'ipocentro come superfici sferiche (onde sferiche) che presentano direzione di propagazione radiale secondo semirette uscenti dall'ipocentro. Le superfici d'onda non conservano tuttavia questa forma e le relative direzioni di propagazione subiscono di conseguenza delle modificazioni a causa della diversa densità degli strati rocciosi che vengono attraversati. I raggi sismici sono infatti l'analogo dei raggi luminosi nella propagazione delle onde elettromagnetiche e come questi subiscono fenomeni di riflessione e di rifrazione attraversando le superfici di separazione tra mezzi a diversa densità in cui l’onda viaggi a differente velocità.
Così un'onda sismica che giunga sulla superficie che separa strati rocciosi con diverse caratteristiche con un opportuno angolo di incidenza  i  genera un'onda riflessa ed una rifratta.
Naturalmente l'angolo di incidenza i deve essere uguale all'angolo di riflessione a (legge della riflessione), mentre il raggio rifratto ubbidisce alla legge di Snell


dove v1 e v2 sono rispettivamente la velocità di propagazione dell'onda incidente e dell'onda rifratta
Poichè la velocità di propagazione di un'onda sismica aumenta in genere con la profondità della roccia attraversata, l'angolo di rifrazione r  sarà maggiore dell'angolo di incidenza quando l'onda penetra verso l’interno della terra. Le onde sismiche che si dirigono verso le zone più profonde del globo terrestre subiscono due tipi di deviazioni per rifrazione:

  • una deviazione continua che incurva la loro traiettoria formando una concavità verso la superficie terrestre, causata dal progressivo aumento della densità delle rocce con la profondità.
  • una deviazione netta e vistosa in corrispondenza delle superfici di separazione tra gli strati interni in cui è suddivisa la terra, in corrispondenza dei quali si producono bruschi cambiamenti di densità e di rigidità delle rocce e quindi di velocità delle onde sismiche.

Un esempio di tale comportamento si ha nella formazione della cosiddetta zona d'ombra, una fascia circolare che avvolge la terra, compresa tra 11.600 km e 16.000 km dall'epicentro (tra 105° e 142° circa) in cui praticamente non arriva alcuna onda P.  Le onde P che penetrano nel nucleo terrestre subiscono infatti due vistose rifrazioni (una in entrata ed una in uscita) che causano una netta variazione di direzione. L'analisi di questa zona d'ombra permise al sismologo inglese R.D. Oldham di prevedere nel 1906 l'esistenza del nucleo terrestre e di stimarne la profondità. Nel 1914 Beno Gutenberg calcolò con precisione la profondità del nucleo terrestre, fissandola ad un valore (2900 km) ancor oggi accettato.
La superficie di separazione tra mantello è nucleo è nota come discontinuità di Gutenberg.
In modo analogo nel 1936 la sismologa danese Inge Lehmann dimostrò l'esistenza a circa 5000 km di profondità di una superficie di separazione (discontinuità di Lehmann) che divideva il nucleo in due porzioni, una più esterna che si ritiene essere allo stato liquido ed una più interna allo stato solido. Oltre a subire rifrazioni le onde sismiche subiscono anche riflessioni sulle superfici di discontinuità che separano strati rocciosi a diversa densità. Nel 1909 il sismologo jugoslavo Mohorovi riuscì ad esempio ad individuare la superficie di separazione tra crosta e mantello studiando il ritardo con cui giungevano ai sismografi le onde sismiche riflesse rispetto a quelle dirette. La superficie di separazione tra crosta è mantello è nota come discontinuità di Moho.

 

Terminologia sismica
I complessi fenomeni di riflessione e di rifrazione che subiscono le onde sismiche all'interno della terra rendono particolarmente complessa la lettura e l'interpretazione dei sismogrammi. Per distinguere i diversi percorsi effettuati dalle onde sismiche i sismologi usano alcuni simboli convenzionali. Le onde rifratte dal nucleo esterno vengono indicate con il simbolo K (in tedesco kern = nucleo), mentre quelle rifratte dal nucleo interno vengono indicate con I.
Le onde riflesse dal nucleo esterno sono indicate con c, mentre quelle riflesse dal nucleo interno vengono indicate con ì. Le onde P riflesse dalla superficie terrestre vengono indicate con PP. Se subiscono due riflessioni vengono indicate con PPP e così via (naturalmente esistono onde riflesse SS, SSS etc).

 

Le oscillazioni libere

Esiste infine un ultimo tipo di vibrazione sismica a bassissima frequenza associata a terremoti di intensità particolarmente elevata. Quando la terra è colpita da un sisma particolarmente intenso essa vibra per parecchie ore come una campana, percorsa da onde stazionarie che possiedono periodi di qualche decina di minuti. Tali vibrazioni continuano liberamente per molte ore (in alcuni casi anche per giorni) anche dopo che il sisma è terminato, con una frequenza che dipende esclusivamente dalle caratteristiche elastiche e meccaniche del supporto vibratile (in questo caso il globo terrestre). Per questo motivo sono state chiamate oscillazioni libere o eigen-vibrazioni (eigen in tedesco significa "proprio" "caratteristico").

Le oscillazioni libere sono analoghe alle vibrazioni stazionarie che si producono in uno strumento a corda pizzicato.
Una corda di chitarra di lunghezza L e' vincolata, e' cioè fissa in due punti (il ponte ed il capotasto) che ne condizionano la vibrazione. I due punti vincolati non sono naturalmente in grado di vibrare e devono quindi necessariamente coincidere con due nodi. Lungo una corda in vibrazione troviamo infatti dei punti in cui l'oscillazione e' massima (ventri e creste) e punti in cui e' nulla (nodi). Ora, affinché due nodi coincidano con i punti vincolati è necessario che nella corda si formino un numero intero di mezze lunghezze d'onda. In questo modo in essa si possono produrre solo alcune caratteristiche lunghezze d'onda.  Possiamo affermare che data una certa lunghezza della corda di un particolare strumento essa possiede un caratteristico spettro discontinuo (a righe). Quando la corda contiene mezza lunghezza d'onda la frequenza corrispondente e' detta fondamentale, mentre le frequenze superiori sono dette armoniche. Il timbro del suono, che identifica uno strumento permettendo di distinguere due note uguali emesse da strumenti diversi, e' determinato dalla sovrapposizione della vibrazione fondamentale con un certo numero di armoniche, tipiche di quel dato strumento. Il timbro di uno strumento e' l'analogo in acustica dello spettro a righe di una sostanza in spettroscopia.

Una corda di lunghezza L, vincolata alle estremità, può dunque produrre solo quelle vibrazioni per le quali vale la relazione
L = n (λ/2)         con n = 1, 2, 3, 4........

dove n è dunque una sorta di numero quantico che definisce e limita le lunghezze d’onda permesse. Anche un corpo sferico come la Terra può presentare onde stazionarie

Tuttavia, essendo un corpo tridimensionale, può vibrare nelle tre dimensioni e sono dunque necessari tre numeri quantici (n,l,m) per descriverne le vibrazioni permesse.
n (Radial overtone number) associato al numero delle superfici sferiche nodali concentriche a raggio costante presenti all’interno della Terra..
l (Angular overtone number) associato al numero di paralleli nodali
m (Azimuthal overtone number) associato al numero di meridiani nodali

L'esistenza delle oscillazioni libere, fu teoricamente prevista nel 1882 dal matematico inglese Horace Lamb, il quale dimostrò che una sfera elastica percossa può produrre solo due tipi di vibrazioni: vibrazione sferoidale (modo S) e vibrazione torsionale o toroidale (modo T).
Per ciascuno di tali modi si utilizza una notazione del tipo . Tuttavia, poiché nei terremoti reali m=0, l’esponente m viene solitamente omesso.

Modo S
Il tipo più semplice di oscillazione sferoidale è quello puramente radiale (l = 0) in cui la Terra esegue movimenti di pulsazione in conseguenza dei quali si espande e si contrae, modificando il suo volume.
Per n = 0 (nessuna superficie nodale) si ha la vibrazione fondamentale , nota anche come modo respiro (breathing mode), in cui tutta la Terra si espande e si contrae all’unisono con periodo di 20,5 minuti
Per n = 1 (una superficie sferica nodale) si ha la prima armonica , Mentre la sfera interna si contrae, la parte esterna alla superficie nodale si espande e viceversa con periodo  di 10,1 minuti


Le oscillazioni sferoidali con  l > 0 presentano dei paralleli nodali e la Terra manifesta movimenti sia radiali che tangenziali.
La modalità più semplice si ha per l = 2 (l=1 non esiste) , in cui sono presenti due piani nodali paralleli e la Terra si allunga e si schiaccia alternativamente come una palla che rimbalza (football mode  = modo del pallone da calcio) con un periodo di 53,9 minuti.

          
Nel 1911 Love calcolò che una sfera di acciaio delle dimensioni della terra doveva possedere un periodo di vibrazione più grave di circa 60 minuti. Oggi si è potuto verificare che il periodo della vibrazione più grave è di circa 54 minuti (mentre le armoniche superiori presentano periodi più brevi). La differenza rispetto a quanto previsto da Love è evidentemente dovuta alle caratteristiche di elasticità e di non uniformità della struttura terrestre.

Modo T
Nel modo T la terra oscilla alternativamente in senso solo tangenziale senza modificare il suo volume e la sua densità.
Nel modo più semplice  (twist mode),  i due emisferi si torcono alternativamente in direzioni opposte con un periodo di 44 minuti rispetto ad un'unica superficie nodale equatoriale.
Nel modo  abbiamo una superficie sferica nodale interna. Mentre la sfera interna esegue un ‘twist’ con i suoi due emisferi che ruotano in senso opposto, il guscio superficiale esegue un ‘twist’ in senso contrario a quello interno.

      
Tali vibrazioni vennero studiate per la prima volta in modo dettagliato con il grande terremoto del Cile del 1960 che fece "suonare" la terra per molti giorni. L'analogia delle oscillazioni libere con le righe spettrali, che consentono di individuare la struttura chimica di una sostanza, è talmente stretta che lo studio dell'interno della terra, effettuato tramite l'analisi delle eigen-vibrazioni, prende il nome di spettroscopia terrestre. Qualsiasi deviazione dalle condizioni di sfericità, elasticità ed omogeneità della terra produce una scomposizione delle righe spettrali. In altre parole esiste una struttura fine dello spettro terrestre strettamente correlata alle sue asimmetrie ed in generale ad ogni scostamento dalle condizioni di idealità. Anche in tal caso abbiamo una sorprendente analogia con gli spettri elettromagnetici: la formazione di una struttura fine dello spettro è infatti l'esatto equivalente dell'effetto Zeeman, dove le righe elettromagnetiche di emissione di una sostanza chimica vengono separate dall'azione di un campo magnetico. L'ellitticità della terra, la particolare e non omogenea distribuzione delle terre emerse, la struttura interna stratificata sono alcune tra le principali cause, responsabili della struttura fine dello spettro vibrazionale terrestre.  In conclusione, allo stesso modo in cui uno spettro elettromagnetico a righe è talmente caratteristico di una sostanza chimica da permetterne l'individuazione in modo univoco, lo spettro vibrazionale terrestre potrebbe fornirci molte informazioni sulla struttura del nostro globo.

Sismografi

I sismografi sono strumenti che registrano l'intensità delle vibrazioni sismiche. Per costruire un sismografo è necessario riuscire ad identificare un sistema di riferimento che possa essere ritenuto in quiete rispetto al suolo che sta vibrando. Il problema è stato risolto applicando il principio di inerzia. In pratica un sismografo, nella sua struttura essenziale, è costituito da un corpo sospeso, sufficientemente massiccio da mantenere per inerzia il suo stato di quiete anche durante un terremoto, nonostante le vibrazioni del terreno, delle pareti e del supporto stesso al quale è appeso.
Se si fissa alla massa sospesa un pennino esso potrà registrare le oscillazioni del terreno su di un rotolo di carta il quale, fissato al terreno, vibrerà con esso.

In realtà ogni stazione sismologica deve possedere almeno tre sismografi disposti lungo i tre assi cartesiani, due che registrino le oscillazioni orizzontali nelle direzioni X ed Y ed uno che registri le oscillazioni verticali nella direzione Z. Naturalmente gli apparecchi odierni, pur basandosi sempre sul medesimo principio sono estremamente più sofisticati, arrivando a poter registrare oscillazioni del suolo dell'ordine di 10-8 cm. La distanza dell'epicentro dalla stazione sismografica si calcola in base al ritardo con il quale le onde S giungono alla stazione rispetto alle onde P.

 

Tale ritardo risulta infatti proporzionalmente maggiore, per distanze più elevate. I grafici che mettono in relazione la distanza dall'epicentro con l'entità del ritardo delle onde S sono detti dromòcrone.
Naturalmente tale metodo non permette di individuare anche la direzione di provenienza delle onde sismiche. Una sola stazione sismica è solo in grado di determinare la circonferenza, avente come raggio la distanza calcolata, sulla quale si trova l'epicentro. Per individuare in modo univoco l'epicentro è necessario utilizzare i dati provenienti da almeno tre stazioni sismiche. L'epicentro viene determinato come punto di intersezione delle tre circonferenze, calcolate da ciascuna delle tre stazioni. Siano ad esempio A, B e C tre stazioni sismiche, le quali abbiano misurato una distanza dall'epicentro, rispettivamente, Da, Db ed Dc, l'epicentro si troverà nel punto E. Il metodo descritto permette di individuare l'ipocentro (e quindi l'epicentro) di terremoti superficiali. Per trovare l'ipocentro di terremoti profondi il metodo è essenzialmente analogo, ma è necessario in questo caso tener conto che le onde sismiche variano la loro velocità attraversando strati a densità diversa. Diventa quindi necessario confrontare ed elaborare i dati di un maggior numero di stazioni sismografiche al fine di determinare le velocità di propagazione (che per gli strati superficiali sono note).

Scale sismiche

L'intensità di un terremoto viene stimata in base agli effetti da esso provocati, attraverso la Scala Mercalli. La scala Mercalli, introdotta nel 1902 dal sismologo e vulcanologo italiano G. Mercalli (1850 - 1914), è una scala empirica e soggettiva. L'attribuzione di un certo grado di intensità ad un terremoto dipende infatti per molti versi dal giudizio e dall'esperienza di colui che valuta gli effetti del terremoto. E' inoltre difficilmente applicabile in luoghi deserti in cui gli effetti del sisma non sono verificabili su edifici e manufatti. Inoltre sismi della stessa intensità possono a volte provocare effetti diversi in relazione al tipo di terreno e di fabbricati. Inizialmente la scala Mercalli prevedeva una suddivisione in 10 gradi, indicati con numeri romani. Si va dal I grado in cui il sisma è "avvertito da pochissimi", al II grado avvertito solo "da poche persone in quiete" e così via attraverso una descrizione delle reazioni di animali e persone al sisma ed un'analisi dei danni subiti dagli edifici al crescere dell'intensità delle scosse. In seguito i gradi vennero portati a 12 e la scala venne adattata alle caratteristiche costruttive ed alla struttura del terreno proprie di regioni diverse. In tal modo oggi esistono diverse varianti della scala Mercalli, ciascuna ottimizzata per luoghi geografici differenti (in Europa occidentale è molto usata la scala MCS o Mercalli-Cancani-Sieberg). Nonostante la scala Mercalli risulti in definitiva, per le ragioni già esposte, poco obiettiva, continua ad essere usata, sia perché rende immediatamente evidenti gli effetti del sisma, sia perché tutti i terremoti avvenuti in epoche passate sono stati tutti classificati secondo tale scala ed in molte regioni del globo non esistono, ancor oggi, sismografi in grado di effettuare rilevazioni di tipo oggettivo. Quando è possibile è comunque preferibile usare la Scala Richter, introdotta nel 1935 dal sismologo statunitense Charles F. Richter. La scala Richter è una scala oggettiva i cui gradi sono legati da una relazione matematica all'ampiezza delle onde registrate dai sismogrammi. La scala Richter è detta anche Scala delle magnitudo. La magnitudo (M) di un sisma è il logaritmo decimale della massima ampiezza d'onda sismica (espressa in micron), registrata da un sismografo posto a 100 Km dall'epicentro.
M  =  log a                      con a = ampiezza massima in m
così un terremoto di zero gradi di magnitudo corrisponde ad onde sismiche con ampiezza massima di 1 micron, un sisma di 1° grado ad onde di ampiezza massima di 10 micron e così via. Quindi per ogni aumento di un grado Richter l'intensità del terremoto aumenta di un fattore 10. Un terremoto di 6° grado è 1000 volte più intenso di uno di 3° grado. In teoria la scala Richter non ha limiti superiori, anche se in pratica vi è un limite nella resistenza delle rocce sottoposte a pressione. In questo secolo però sono stati classificati solo un paio di terremoti con magnitudo 8,9 , per cui si usa suddividere la scala in 9 gradi (da 0 a 9).  Fino al 3° grado siamo nel campo dei microsismi, non avvertiti dall'uomo. Al di sopra del 6° grado i danni cominciano ad essere notevoli. Oggi esistono strumenti in grado di registrare magnitudo negative (-1, -2 ...). Naturalmente non tutte le stazioni sismografiche si trovano a 100 km dall'epicentro. Per questo motivo lo stesso Richter propose una formula modificata in modo da consentirne l'utilizzo anche a stazioni sismiche poste a distanze diverse dall'epicentro.
M = log a  +  C . log d  + D
dove C e D sono parametri variabili da luogo a luogo che dipendono dalla natura del terreno e dal coefficiente di elasticità delle rocce, mentre d è la distanza in gradi dall'epicentro (1° 111 Km).
Conoscendo la magnitudo di un terremoto è possibile stimare in modo approssimato l'energia elastica liberata. La formula di conversione usata per l'Italia è la seguente (con l'energia E espressa in erg):
log E   =    9.15   +   2.15 M


Vulcanologia

La vulcanologia è quella branca della geologia che studia l'attività vulcanica o vulcanismo, analizzando le cause e le modalità delle eruzioni vulcaniche, le strutture da esse prodotte e la loro distribuzione geografica. L'attività vulcanica può essere definita come la fuoriuscita, con modalità differenti, di quella complessa miscela di minerali e gas allo stato fuso, chiamata magma.
Il magma fuoriesce sia perché risulta meno denso delle rocce circostanti, ma soprattutto perché alle temperature che lo caratterizzano i composti volatili in esso presenti producono enormi pressioni.
Quando il magma trabocca in superficie la sua composizione chimica risulta differente, soprattutto per l'intenso degassamento cui è sottoposto.  Alla nuova miscela che si forma viene dato il nome di lava. Normalmente la lava non è l'unico prodotto dell'attività vulcanica, ad essa si accompagnano spesso prodotti piroclastici e gas.
Tra i fattori che determinano le caratteristiche di un'eruzione vi sono: la composizione chimica del magma, la temperatura del magma e la quantità di gas disciolti.
Per quanto riguarda la composizione chimica del magma si è già visto come sia soprattutto la percentuale di silice che determina la viscosità del magma. I magmi basici, poveri in silice, sono più fluidi dei magmi acidi, ricchi in silice. Si ritiene che ciò sia legato al fatto che durante il processo di raffreddamento i tetraedri di SiO44- formano lunghe catene che ostacolano lo scorrimento del magma. Per quel che riguarda la temperatura del magma, è evidente che un suo aumento non fa che elevare l'energia cinetica media delle particelle, le quali vincono così più facilmente le forze di attrazione reciproca rendendo il magma più fluido. Infine i gas disciolti aumentano la fluidità del magma (abbiamo già visto che in questo modo facilitano anche il processo di cristallizzazione nelle rocce ignee intrusive). Ma la loro presenza condiziona la modalità dell'eruzione principalmente per altri motivi. Quando infatti il magma raggiunge una zona prossima alla superficie terrestre passa rapidamente da condizioni di elevata pressione a condizioni di pressione molto prossime a quella atmosferica. Ciò provoca, come si è già detto un rapido degassamento, in quanto i gas non riescono più a rimanere disciolti nel magma (legge di Henry) a pressioni esterne così basse. Inoltre, non appena liberatisi, si espandono notevolmente. Ora, i magmi basaltici, molto fluidi, permettono ai gas in espansione di risalire e di liberarsi con relativa facilità, mentre i magmi acidi, piuttosto viscosi, ostacolano la fuoriuscita dei gas. Così i gas, imprigionati nella massa magmatica, aumentano rapidamente la loro pressione fino a produrre dei fenomeni esplosivi che frantumano le rocce superficiali ed eiettano frammenti lavici di diverse dimensioni, detti piroclasti. Il materiale piroclastico viene classificato in base alle sue dimensioni in ceneri (< 2 mm), lapilli (2 – 6 mm) e bombe vulcaniche (> 6 mm).
In definitiva dunque, mentre il magma basico tende a produrre tranquille colate che possono correre per chilometri prima di fermarsi (vulcanesimo effusivo), il magma acido produce eruzioni più o meno violente di tipo esplosivo (vulcanesimo esplosivo). Esistono comunque situazioni intermedie in cui fenomeni effusivi si alternano ad eventi esplosivi.

1) Vulcanesimo effusivo
La lava è il tipico prodotto dei fenomeni effusivi. Quando le fluide colate basaltiche iniziano a raffreddare, sulla loro superficie si forma una crosta sottile e liscia che viene trascinata dalla massa fusa sottostante. Tale lava è detta con termine hawaiano "pahoehoe" (pronuncia pa-oi-oi), letteralmente "sulla quale si può camminare scalzi" (ovviamente dopo che si è raffreddata completamente). Un tipo particolare di lava pahoehoe è la lava a corda, che si forma quando il flusso della colata basaltica rallenta e la superficie liscia superficiale, ancora plastica,  si corruga come  una tenda raccolta sul lato di una finestra. Quando lava basaltica fuoriesce dai fondali oceanici, l'enorme pressione esercitata dai 2/3000 m d'acqua sovrastanti, impedisce un degassamento rapido e l'eruzione avviene molto tranquillamente. A contatto con l'acqua la lava si raffredda bruscamente formando  una   tipica   crosta  vetrosa  continuamente  rotta  da  nuove bolle di lava che fuoriescono.  La  colata  appare  infine  come  un  ammasso  di  sfere  schiacciate  e  saldate  tra  loro, denominate pillow lava (lava a cuscini). Le eruzioni sottomarine si rendono evidenti in superficie solo quando la colonna d'acqua sovrastante non supera i 200 m. In tal caso, l'interazione tra acqua e magma, non più frenata dalla pressione idrostatica, provoca violente esplosioni che si manifestano in superficie come gigantesche nubi di vapori bianchissimi.
Se la lava è invece più viscosa, la superficie solidificatasi della colata si rompe in frammenti taglienti, assumendo un aspetto scabroso e accidentato, che gli hawaiani indicano come lava "aa", letteralmente sulla quale non si può camminare a piedi scalzi. Un tipo particolare di lava "aa" è la lava a blocchi che si produce quando il magma è particolarmente viscoso e la crosta superficiale della lava si frantuma in grossi blocchi spigolosi. Le lave dell’Etna sono spesso di questo tipo con il fronte delle colate che prende l'aspetto di una massa di macerie in lenta avanzata.

2) Vulcanesimo esplosivo
In genere qualsiasi colata lavica è preceduta da fenomeni esplosivi più o meno intensi, che segnano il momento in cui inizia un'eruzione. Nel caso di magmi acidi molto viscosi tali fenomeni possono essere prevalenti ed estremamente intensi.
Uno dei fenomeni esplosivi più violenti si produce quando l'enorme pressione prodotta dalle bolle di gas imprigionate nei magmi acidi in vicinanza della superficie terrestre, supera la resistenza del materiale sovrastante. I gas surriscaldati, in rapidissima espansione trascinano via brandelli di roccia e lava polverizzata in minutissime goccioline. Si forma una gigantesca nube incandescente, detta nube ardente, in grado di muoversi a velocità superiori ai 100 km/h e con un potere distruttivo incredibile. Nel 1902 una nube ardente prodotta dal vulcano Pelée, un piccolo vulcano della Martinica (Piccole Antille) raggiunse in pochi minuti la cittadina di St Pierre, a 9 km di distanza, radendola al suolo ed uccidendo tutti i suoi 28.000 abitanti.
Altri fenomeni esplosivi sono quelli che si producono quando l'acqua di falda entra in contatto con il magma o con le rocce fortemente surriscaldate da questo. Il passaggio istantaneo dell'acqua allo stato di vapore può produrre un'eruzione idromagmatica o freatomagmatica di grande violenza.
A fenomeni esplosivi particolari possono essere ricondotte caratteristiche strutture vulcaniche note come diatremi o neck. Si tratta di antichi condotti vulcanici riempiti di breccia, materiale frantumato e strappato alle pareti del condotto durante una fuga esplosiva di gas da una camera magmatica molto profonda. Il materiale portato in superficie proviene dalla base della crosta o addirittura dalla superficie del mantello. I diatremi sono luoghi privilegiati per studiare la composizione chimica delle rocce ultrafemiche (kimberliti) che si trovano a gran profondità. I più famosi diatremi sono quelli di Kimberly, in Sud Africa. Oltre alle kimberliti essi sono ricchi di diamanti che si originano ad almeno 100 - 120 chilometri sotto la superficie terrestre. Solo a queste profondità infatti si raggiungono le pressioni necessarie per cristallizzare il carbonio sotto forma di diamante.

Le eruzioni possono avvenire da una fessura estesa della crosta terrestre e vengono perciò dette eruzioni lineari o fissurali, oppure da un condotto sfociante in un punto e vengono in questo caso dette eruzioni centrali.

3) Le eruzioni centrali: gli edifici vulcanici e la classificazione di Lacroix
3.1 Gli edifici vulcanici
Quando il magma giunge in superficie in un punto preciso, i prodotti vulcanici (lava e materiale piroclastico) tendono a raccogliersi intorno allo sbocco del condotto, formando edifici di forma in genere conica detti vulcani (dall'isola Vulcano, nelle Eolie, mitica sede della fucina del dio omonimo). Tipicamente in un vulcano è possibile riconoscere un condotto di alimentazione (camino vulcanico) che mette in comunicazione un serbatoio di magma (bacino o camera magmatica) con una o più aperture esterne (bocche magmatiche o crateri). La fuoriuscita e l'accumulo dei prodotti vulcanici intorno al cratere producono edifici vulcanici, la cui forma e struttura dipende in gran parte dal tipo di magma che li alimenta.

Gli edifici vulcanici possono esseri ricondotti a tre strutture fondamentali:
3.1.a I coni di piroclasti formati di soli materiali piroclastici e quindi in seguito ad una attività prevalentemente esplosiva. Presentano generalmente una forma conica piuttosto regolare. Dato che il materiale piroclastico incoerente ha un angolo di riposo piuttosto elevato, (tra i 30° ed i 40°) sono tra gli edifici vulcanici più ripidi. I coni di cenere in genere presentano pendii più dolci rispetto ai coni in cui prevalgono lapilli e scorie più grossolane.
Si tratta generalmente di edifici vulcanici di modeste dimensioni, spesso inferiori ai 300 m.

3.1.b Gli strato-vulcani sono edifici vulcanici costituiti da un'alternanza di piroclastiti e colate laviche. La loro formazione è legata ad un succedersi di fasi  effusive ed esplosive. Molti tra i più suggestivi edifici vulcanici della terra sono di questo tipo, come il Fujiyama, il Vesuvio, l'Etna, lo Stromboli e Vulcano. In genere quando prevale l'attività effusiva i fianchi risultano meno ripidi (come avviene nell'Etna), mentre quando prevale l'attività esplosiva i fianchi risultano più ripidi ( come nel Vesuvio). Spesso in questi vulcani si aprono bocche laterali avventizie, a causa dell'ostruzione della bocca principale, per cui si originano in alcuni casi veri e propri vulcani multipli, in cui si affiancano diversi edifici vulcanici. Un'altra caratteristica comune a molti strato-vulcani è la presenza alla loro sommità di una cavità particolarmente ampia detta caldera (in spagnolo, "pentolone"). La maggior parte delle caldere si forma quando il soffitto della camera magmatica, parzialmente svuotata, cede. In altri casi viene prodotta da esplosioni che aprono grandi voragini alla sommità dell'edificio vulcanico. All'interno della caldera si possono riformare uno o più edifici vulcanici. In tal caso si forma un tipo particolare di strato-vulcani, i cosiddetti vulcani a recinto, di cui il Vesuvio è un tipico esempio, in cui un avvallamento separa il cratere più interno di nuova formazione dal bordo più esterno della caldera.
Molte caldere ormai inattive sono state in seguito riempite d'acqua con formazione di laghi vulcanici, riconoscibili dalla caratteristica forma circolare (Bolsena, Vico, Nemi, Bracciano e il Crater Lake nell'Oregon).

3.1.c I vulcani a scudo sono edifici vulcanici prodotti quasi esclusivamente da processi effusivi, di lava basaltica molto calda (1200 °C) e fluida, con esplosioni molto rare. Il magma molto fluido scorre velocemente formando edifici vulcanici dalla forma larga e piatta. Presentano fianchi con piccole pendenze, mai superiori ai 15°. Tra di essi troviamo i più grandi vulcani del mondo, come il Mauna Loa ed il Mauna Kea nelle isole Hawaii.

3.2 La classificazione di Lacroix
In base alle modalità con cui si manifestano i processi eruttivi le eruzioni vengono suddivise in 4 tipi fondamentali, classificati in ordine di acidità crescente del magma, secondo l'ormai classico schema proposto dal geologo francese A. Lacroix, all'inizio del secolo.

3.2.a Eruzioni di tipo hawaiano
Caratterizzati da effusioni di lava basaltica fluida. Sono praticamente assenti i fenomeni esplosivi. Formano edifici vulcanici a scudo. A volte i gas raggiungono pressioni sufficienti a formare fontane di lava alte fino a 300 m. Nei crateri la lava fluida può ristagnare formando veri e propri laghi di lava.

3.2.b Eruzioni di tipo stromboliano
Il prototipo di tali vulcani è lo Stromboli, nell'omonima isola siciliana delle Eolie. I vulcani caratterizzati da attività stromboliana presentano una lava solo leggermente viscosa che ristagna nel cratere, ricoprendosi di una crosta solida. I gas si liberano al di sotto della crosta con relativa facilità e la mandano in frantumi con esplosioni di lieve entità ad intervalli di tempo piuttosto brevi (da pochi minuti a poco più di un'ora), con formazione di fontane di lava spettacolari. Esaurita la spinta dei gas la lava torna a ristagnare.

 

3.2.c Eruzioni di tipo vulcaniano
Prendono il nome dall'isola di Vulcano nelle Eolie. Sono caratterizzate da una lava più acida e quindi più viscosa, di tipo andesitico. I gas si liberano con maggior difficoltà e la lava all'interno del cratere fa in tempo a formare un tappo solido di notevole spessore. I gas impiegano molto tempo prima di raggiungere la pressione necessaria per far saltare il tappo e quando ciò avviene l'esplosione è violentissima, tanto da distruggere a volte l'estremità superiore dell'edificio vulcanico. Dal cratere si alza una grande nube dalla caratteristica forma di fungo, di colore scuro per la grande quantità di materiale piroclastico in sospensione. Casi particolari, particolarmente violenti, di eruzioni vulcaniane vengono considerate le eruzioni di tipo vesuviano e quelle di tipo pliniano, che alcuni autori classificano però in modo autonomo.

  • Le eruzioni di tipo vesuviano sono caratterizzate da un'esplosione talmente violenta che il camino magmatico superiore viene rapidamente svuotato. Altra lava risale velocemente dalle zone profonde espandendosi violentemente in superficie in un'enorme nube "a cavolfiore" di goccioline minutissime.

Secondo la ricostruzione fattane, l'eruzione del Vesuvio del 79 d.C. si concluse dapprima con la deposizione su di una vasta area delle pomici e delle ceneri. In seguito, quando l'acqua di falda raggiunse la camera magmatica, si ebbe una seconda violentissima esplosione freatomagmatica che lanciò nuovo materiale piroclastico su tutto il golfo, provocando la distruzione di Pompei. La città di Ercolano venne invece distrutta qualche giorno dopo da un fenomeno diverso: venne infatti sepolta da una colata di fango o lahar, termine con cui viene indicato lo scivolamento lungo le pendici di un vulcano di ceneri impregnate di acqua.

  •  Le eruzioni di tipo pliniano (descritte per la prima volta da Plinio il Giovane, che ebbe occasione di assistervi in occasione dell'eruzione del Vesuvio del 79 d.C.) sono ancora più violente. Il materiale vulcanico (lava polverizzata, gas e piroclasti) viene letteralmente sparato attraverso il condotto con una velocità iniziale superiore a quella del suono. La colonna sale verticalmente per qualche decina di chilometri prima di perdere energia ed espandersi in una grande nuvola a forma di pino marittimo.

3.2.d Eruzioni di tipo peléeano
Prendono il nome dal vulcano Pelée nell'isola di Martinica, nelle Indie Occidentali, la cui eruzione del 1902 distrusse la città di St Pierre. L'attività eruttiva di tipo peleeano è sostenuta da una lava particolarmente acida e viscosa che arriva in superficie già praticamente solidificata e viene spinta fuori dal cratere sotto forma di vere e proprie torri di roccia alte qualche centinaio di metri. Nell'eruzione del Pelée si era formata in una decina di giorni una colonna rocciosa che ostruiva il cratere alta 250 m. Dalla base delle "torre" si liberano periodicamente nubi ardenti che rotolano per le pendici dell'edificio vulcanico.

Naturalmente non tutte le eruzioni avvengono esattamente con le modalità sopra descritte, nella maggior parte dei casi ogni eruzione presenta sia una iniziale fase esplosiva che una successiva fase effusiva. L'intensità e la durata delle due fasi è però diversa in relazione al tipo di eruzione e spesso ciascun evento eruttivo di uno stesso vulcano può presentarsi con caratteristiche differenti. La classificazione appena proposta ha dunque solamente un valore indicativo.

4) Le eruzioni lineari o fissurali
Le eruzioni vulcaniche da un camino centrale sono certamente le più familiari, ma la maggior parte del materiale magmatico fuoriesce da fratture lineari della crosta terrestre. Invece di portare alla formazione del tipico cono vulcanico, il materiale emesso si distribuisce ai due lati della fessura formando ampie colate che ricoprono migliaia di km2, dette plateaux.  La maggior parte di queste eruzioni produce lave basaltiche molto fluide provenienti direttamente dal mantello. Attualmente non vi sono fessure attive sui continenti, ma solo sui fondali oceanici.
Si tratta di enormi fratture,  in rilievo rispetto ai fondali tanto da formare vere e proprie catene montuose, note come dorsali oceaniche (la più importante è quella medio-atlantica). Dalla sommità delle dorsali sgorga continuamente lava basaltica.
Ma   in   passato tali  fessure  hanno  formato  enormi  plateaux,  tuttora  riconoscibili  all'interno delle aree continentali, come il Plateau del fiume Columbia (1/2 milione di Km2 per uno spessore di 1200 m) o il Plateau del fiume Paranà, tra Brasile ed Uruguay ( 1 milione di km2 per uno spessore di 500 m).
Anche i vulcani islandesi sono di questo tipo. D'altra parte l'Islanda è un affioramento della dorsale medio atlantica.

Eruzioni fissurali di tipo acido non sono mai state osservate in epoca storica, ma è certo che esse sono avvenute in passato. Quando l'eruzione fissurale è alimentata da un magma particolarmente sialico si forma un particolare tipo di nube ardente in cui i lapilli e le ceneri tenute in sospensione dai gas sono costituiti in gran parte da minuscoli frammenti di vetro fuso. Quando queste nubi si depositano formano particolari piroclastiti, dette ignimbriti (o tufi saldati). Esempi ne sono la piattaforma porfirica atesina, il vasto tavolato di porfido che fa da basamento ai massicci dolomitici, prodottosi da grandi fessure circa 250 milioni di anni fa e la più recente ignimbrite campana, che ricopre l'intera pianura campana, tra Napoli e Caserta, prodottasi circa 35.000 anni fa, in seguito ad una nube ardente fuoriuscita da alcune fessure apertesi nell'area dei Campi Flegrei.

 

5) Formazione del magma 
Oltre all'aumento di temperatura vi sono altri due fattori che possono concorrere a determinare la fusione di una roccia con formazione di un magma: la pressione e la presenza di acqua.
Poichè infatti una roccia fondendo si dilata, un aumento di pressione esercitato dall'esterno agisce in senso contrario (principio di Le Chatelier), inibendo il processo di fusione. Per questo motivo rocce profonde, sottoposte ad enormi pressioni risultano solide pur possedendo temperature che ne consentirebbero la fusione a pressione atmosferica. Tale comportamento consente ad esempio di spiegare il motivo per il quale il mantello peridotitico che si trova allo stato solido può iniziare a fondere quando viene riportato in superficie a causa della distensione crostale che si produce a livello delle dorsali medio- oceaniche. L'acqua può infine facilitare la fusione, diminuendo il punto di fusione. Vedremo che si ritiene che ciò accada proprio a livello delle dorsali e nei cosiddetti punti di subduzione, dove due frammenti crostali si scontrano ai margini tra continente ed oceano.

6) Vulcanesimo secondario
Quando la solidificazione del magma nella camera magmatica si sta per concludere ed il processo si avvia verso la fase idrotermale, possono emergere in superficie soltanto soluzioni idrotermali e vapori caldi. La molecola d'acqua come tale, può esistere solo fino ad una temperatura di circa 370°C. oltre la quale si scinde in ioni ed entra nella composizione degli anfiboli e dei fillosilicati come ossidrili. Oltre i 700°C diventa impossibile la stessa presenza dell'ossidrile e nessuno dei silicati  che cristallizzano a temperature elevate possiede l'ossidrile nella sua struttura.
Quando dunque viene raggiunta una temperatura di 200-300°C, viene espulsa dal sottosuolo tutta l'acqua che, assieme ad elementi come il boro e lo zolfo, non hanno trovato posto nei reticoli cristallini dei silicati. Spesso l'acqua di origine magmatica si unisce con l'acqua di origine freatica (acqua di falda). Tali manifestazioni sono dette fumarole. Si distinguono le fumarole calde (da 90° a 300°C) dalle fumarole fredde (sotto i 90°C).

6.1 Fumarole calde  Sono esempi di fumarole calde le solfatare, getti di vapore surriscaldato (130-165°C) contenente acido solfidrico. L'acido solfidrico viene ossidato dall'ossigeno atmosferico ad acido solforico e zolfo elementare che cristallizza incrostando le superfici circostanti. Famosa è la solfatara di Pozzuoli (nel complesso dei Campi Flegrei, in Campania).  Ad attività fumarolica vanno associati anche i soffioni boraciferi di Larderello in Toscana. Si tratta di getti di vapore con acido borico ad alta temperatura (120° - 210°C) che, sospinti da pressioni elevate (1 - 6 atm), possono innalzarsi fino a 15-20 metri dal suolo.

6.2 Fumarole fredde  Producono solo vapor d'acqua e anidride carbonica, la cui temperatura raramente si avvicina ai 100°C.  Fumarole fredde particolarmente ricche di anidride carbonica sono le mofete, di cui si hanno esempi nei Campi Flegrei.

Altri due fenomeni associati in prevalenza alle manifestazioni del vulcanismo secondario sono le sorgenti termali ed i geyser.

6.3 Le sorgenti termali  possono prodursi semplicemente per contatto dell'acqua con rocce profonde, più calde di quelle superficiali per il normale gradiente geotermico. Il fenomeno è però particolarmente accentuato in aree vulcaniche. Si tratta di acque particolarmente ricche di minerali in soluzione e con temperature che possono andare dai 20° ai 70°C.

6.4 I Geyser sono getti intermittenti di acqua calda che possono innalzarsi per decine di metri. Provengono da cavità sotterranee, poste a qualche centinaio di metri di profondità, in cui l'acqua profonda, sottoposta al peso della colonna d'acqua sovrastante, raggiunge temperature di ebollizione molto superiori ai 100°. Quando viene raggiunta una temperatura sufficientemente elevata da vincere la pressione idrostatica il geyser entra in attività. Il più famoso è l'Old Faithful nel parco nazionale di Yellowstone in U.S.A. Ma se ne trovano altri in Islanda, nella Nuova Zelanda, nelle isole Azzorre.

7) Distribuzione geografica dei fenomeni vulcanici e sismici
Non tutte le regioni della terra sono interessate in egual misura dai fenomeni vulcanici e sismici. Tuttavia la loro distribuzione non è casuale. Inoltre molto spesso le aree interessate da fenomeni sismici sono anche sede di attività vulcanica. Il motivo di tale coincidenza e della loro particolare distribuzione va ricercato nella dinamica crostale, descritta dalla teoria della tettonica a placche, di cui avremo in seguito modo di parlare. Per ora ci limiteremo ad indicare le zone in cui si trovano concentrati la maggior parte dei fenomeni vulcanici e sismici, le quali coincidono con i confini dei frammenti crostali.
7.1 Dorsali medio-oceaniche Si tratta di quelle aree rilevate presenti sui fondali oceanici caratterizzate da attività basaltica effusiva

7.2 Cintura di fuoco circumpacifica
con tale nome si fa riferimento alla fascia che borda le coste orientali e occidentali dell'oceano pacifico, dove sono concentrati il 60% dei vulcani attivi ed il 70% dei terremoti verificatisi nel nostro secolo.

/.3 Sistema alpino-himalaiano
Nella figura la linea più scura individua i principali confini tra i frammenti crostali, i quali coincidono con le regioni a più elevata attività sismica e vulcanica.

 

Struttura interna della terra

1) Metodi di indagine
Lo studio della struttura interna della terra è complicato dal fatto che ci è possibile avere una conoscenza diretta solo dei suoi strati più superficiali, mentre dobbiamo accontentarci di dedurre la natura degli strati più profondi tramite una serie di conoscenze indirette.
Le conoscenze dirette si avvalgono di alcune trivellazioni di pozzi, scavati sia per l'estrazione del petrolio che per scopi scientifici. In tal modo si è arrivati comunque ad una profondità massima di una quindicina di chilometri. Altre conoscenze dirette derivano dal materiale che viene effuso dalle dorsali oceaniche, dallo studio delle rocce che sono state sollevate durante i movimenti orogenetici che hanno portato alla formazione delle montagne. Le rocce più profonde oggi note si ritiene siano le kimberliti, che si trovano nei diatremi diamantiferi, arrivate in passato in superficie da profondità di 100 - 200 km, grazie a violente eruzioni di tipo esplosivo.

1.1 I dati sismici e le superfici di discontinuità
La via principale attraverso la quale si ottengono informazioni indirette sulla struttura profonda della terra è l'analisi dei tracciati delle onde sismiche prodotte artificialmente o provocate naturalmente dai terremoti. Muovendosi all'interno della terra le onde sismiche (P ed S) possono subire una serie di riflessioni, rifrazioni e variazioni di velocità in funzione della diversa densità, temperatura e dello stato fisico (liquido o solido) che caratterizza i diversi strati profondi. In generale le onde sismiche accelerano mentre si propagano in profondità. Inoltre mentre le onde P si propagano attraverso una roccia qualunque sia il suo stato fisico, le onde S si bloccano in presenza di strati allo stato liquido. I geologi hanno così osservato che le onde sismiche subiscono fenomeni di riflessione e rifrazione particolarmente evidenti in corrispondenza di alcune superfici concentriche che si trovano a profondità diverse. Inoltre in corrispondenza di tali superfici le onde sismiche subiscono delle brusche variazioni di velocità che testimoniano il passaggio repentino da uno strato ad uno con diverse caratteristiche fisiche. A tali superfici che separano la terra in strati concentrici caratterizzati da un diverso stato chimico fisico è stato dato il nome di superfici di discontinuità.

La prima di queste superfici, oggi nota come 'Moho', venne scoperta nel 1909 dal geofisico iugoslavo Mohorovicic a qualche decina di chilometri di profondità. In corrispondenza della Moho le onde sismiche subiscono una brusca accelerazione nella direzione del centro della terra.
La Moho separa lo strato più superficiale della terra, detto crosta, dallo strato sottostante, più denso, detto mantello. La Moho non si trova a profondità costante. Essa è presente ad una profondità che va da 0 a 10 km sotto i fondali oceanici, mentre si trova a 30 - 40 km sotto i continenti, con l'eccezione delle grandi catene montuose, al di sotto delle quali arriva ad una profondità di 70 - 80 km. Nel 1914 B. Gutenberg scoprì un'altra importante discontinuità a 2900 km di profondità, oggi conosciuta come discontinuità di Gutenberg, che non lasciava passare le onde S. Al di sotto della Gutenberg dunque il materiale deve essere allo stato fluido, perlomeno nelle sue regioni più superficiali. La Gutenberg divide la porzione centrale della terra, detta nucleo, dal mantello. Con riferimento alla probabile composizione chimica dei tre strati principali in cui è suddivisa la terra si usano ancora spesso i termini coniati da Suess nel 1885. SIAL (silicati di alluminio) per la crosta, SIMA (silicati di magnesio) per il mantello e NIFE (leghe di nichel e ferro) per il nucleo. I geologi ritengono che la densità dei materiali di cui sono composti i vari strati cresca a partire da un valore di 2.7 kg/dm3 per le rocce crostali (valore rilevato direttamente) fino a raggiungere valori di 12 - 13 kg/dm3 nel nucleo. Tali dati sono naturalmente compatibili con la densità media terrestre, pari a circa 5,5 kg/dm3,  con le densità calcolate sulla base della velocità di propagazione delle onde sismiche alle diverse profondità e con le densità dei diversi composti chimici, misurate in laboratorio.

2) La struttura interna della Terra
I dati sismici più recenti hanno permesso di giungere ad una conoscenza più dettagliata di crosta, mantello e nucleo, con la scoperta di discontinuità minori e di importanti strutture probabilmente legate alla dinamica crostale superficiale.

2.1 La crosta
La struttura della crosta non è omogenea ed è necessario effettuare una distinzione tra crosta continentale e crosta oceanica.

  • La crosta continentale è più spessa, ma meno densa di quella oceanica. Al di sotto di un velo di rocce sedimentarie è formata da due strati. Uno più superficiale di tipo granitico (strato del granito) ed uno più profondo, di rocce metamorfiche, detto impropriamente strato del basalto. I due strati sono separati da una discontinuità secondaria detta di Conrad.
  • La crosta oceanica è più sottile, ma più densa, costituita da basalti ricoperti da un velo di rocce sedimentarie. A differenza della crosta continentale che in alcuni punti risulta vecchia di 3 - 4 miliardi di anni, non esiste crosta oceanica più vecchia di 200 - 250 milioni di anni. La crosta oceanica più recente è quella che si trova in prossimità delle dorsali, mentre la sua età cresce allontanandosi da esse.

2.2 Il Mantello
Una discontinuità minore, posta a circa 700 km di profondità  (discontinuità di Repetti) separa il mantello in mantello superiore e mantello inferiore. Mentre il mantello superiore sarebbe costituito da silicati di ferro e magnesio ultrafemici (peridotiti), il mantello inferiore potrebbe essere formato dagli stessi elementi strutturati in minerali più compatti e densi, come ossidi e solfuri di ferro magnesio e silicio (in tal caso alcuni vorrebbero mantenere il termine SIMA per il mantello superiore, introducendo il termine OSOL per il mantello inferiore). Lo strato più superficiale del mantello, subito sotto alla Moho, fino ad una profondità media di circa 100 km, è composto di peridotiti allo stato solido. I geofisici chiamano tale strato 'LID' (coperchio). La crosta ed il LID, benché separati dalla Moho, formano una struttura rigida, solidale, di grande importanza nella dinamica crostale, detta litosfera. Al di sotto della litosfera, tra i 100 ed i 250 km di profondità, si trova uno strato peridotitico in cui la velocità delle onde sismiche decresce e che i geofisici chiamano L.V.L. (low  velocity layer) o strato a bassa velocità.
Si ritiene infatti che le particolari condizioni di temperatura e di pressione esistenti a quelle profondità abbiano portato la peridotite molto vicina al punto di fusione. Le rocce si comporterebbero perciò come un fluido molto viscoso o come un solido malleabile, in grado di  deformarsi senza spezzarsi e, ciò che più qui interessa, di muoversi per convezione da punti più caldi verso punti più freddi. Tale strato è conosciuto anche come astenosfera (dal greco asthenès = debole, ad indicare la non rigidità delle rocce). Ma sullo spessore da attribuire all'astenosfera non vi è ancora accordo tra i geofisici.
Secondo le ipotesi attuali la litosfera più leggera galleggerebbe letteralmente sulla sottostante astenosfera e verrebbe da questa trascinata grazie ai movimenti convettivi che la caratterizzano.

2.3 Il nucleo
Anche il nucleo presenta al suo interno una superficie di discontinuità a circa 5000 km di profondità (discontinuità di Lehmann) che lo divide in nucleo esterno e nucleo interno.
Il nucleo esterno è come abbiamo già detto allo stato fuso, mentre al di sotto della Lehmann l'enorme pressione riporta il materiale allo stato solido. La densità passa dai 9 -10 kg/dm3 del nucleo esterno ai 13 kg/dm3 del nucleo interno. Sulla composizione chimica del nucleo sono state fatte molte ipotesi, da quella classica di una lega di ferro-nichel, in accordo con la composizione delle sideriti, a quella che prevedeva l'esistenza di materia allo stato degenere, simile a quella presente nelle stelle, con i protoni e gli elettroni strettamente impacchettati, senza possibilità di formare atomi di elementi distinti.
Attualmente i geofisici sono d'accordo sulla natura metallica del nucleo, ma gli esperimenti di laboratorio evidenziano che il ferro da solo o una lega di ferro-nichel verrebbero eccessivamente compressi dalle pressioni esistenti al centro della terra, raggiungendo dei valori di densità incompatibili con quelli ottenuti dai dati sismici. Si ritiene perciò probabile l'esistenza , assieme al ferro, di elementi più leggeri. Il Silicio, per la sua abbondanza relativa nell'universo, sembra essere il candidato migliore. Altri elementi possibili potrebbero essere lo zolfo e l'ossigeno.

3) Il calore terrestre
Dalle misure eseguite si è potuto constatare che, a parte gli strati più superficiali della crosta terrestre che risentono della temperatura esterna, la temperatura cresce in media di 3°C ogni 100 m di profondità. Si ritiene comunque che tale gradiente geotermico non possa mantenersi costante fino a grandi profondità, poiché in tal caso al centro della terra verrebbero raggiunte temperature stellari, dell'ordine dei 200.000°C. Secondo la maggior parte dei geofisici invece la temperatura al centro della terra non sarebbe superiore ai 4.000 - 5.000 °C. Per molto tempo si è ritenuto che la fonte principale dell'energia termica irradiata dal nostro pianeta fosse di origine primordiale, derivando dalla conversione di energia cinetica in calore durante il processo di accrescimento meteorico della terra 4,5 miliardi di anni fa. Oggi si ritiene invece che la maggior parte del calore terrestre (circa il 70%) sia prodotto dal decadimento dei materiali radioattivi presenti nella crosta e nel mantello. Dalle analisi di laboratorio risulta che le rocce granitiche sono molto più ricche di elementi radioattivi rispetto alle rocce basaltiche per cui i graniti producono 6 volte più calore dei basalti.
Ciò porterebbe a concludere che il flusso termico (il flusso termico medio della terra è di 0,06 W/m2) dovrebbe essere superiore a livello della crosta continentale granitica rispetto alla crosta oceanica basaltica. In realtà il flusso che si misura nei due casi è simile. Si ritiene che ciò sia dovuto al fatto che il calore prodotto dal mantello sotto la crosta oceanica venga portato in superficie in modo più efficiente di quello prodotto dal mantello sotto la crosta continentale.
I geofisici ritengono che il fenomeno sia da collegarsi all'esistenza di enormi correnti convettive che rimescolano lentamente l'astenosfera all'interno del mantello, facendo risalire materiale più caldo verso la litosfera sovrastante.  I motivi per cui tali movimenti convettivi sarebbero più intensi sotto la crosta oceanica, non sono però ancora chiari.

4) Il magnetismo terrestre
Come sappiamo la terra si comporta come se al suo interno esistesse un enorme magnete al suo centro, inclinato di circa 11° rispetto all'asse di rotazione, in modo che i poli geografici non coincidono con i poli magnetici. L'esistenza di questo presunto magnete, per quanto suggestiva è priva di qualsiasi fondamento scientifico, infatti all'interno della terra sussistono temperature ben superiori al cosiddetto punto di Curie delle principali sostanze ferromagnetiche (Ferro 768 °C, Magnetite Fe3O4 525°C, Nichel 358°C), oltre il quale nessun materiale è in grado di rimanere magnetizzato. Il campo geomagnetico fu descritto per la prima volta in termini matematici da Gauss nel 1839. Secondo tale modello il campo viene espresso come somma di una serie di componenti diverse, di cui la componente dipolare è la più intensa. L’asse di tale dipolo, detto asse geomagnetico, è inclinato di 11,5° rispetto all’asse di rotazione ed incontra quindi la superficie terrestre in corrispondenza dei poli geomagnetici N (78,5° N 69° W) e S (78,5° S 111° E).
I poli magnetici reali non corrispondono a quelli teorici (a causa dell’influsso delle componenti non dipolari) e cambiano di posizione nel corso degli anni.
Il campo geomagnetico in ogni punto della superficie terrestre viene descritto tramite tre parametri (elementi magnetici):

  • la declinazione magnetica, pari all'angolo tra la direzione del nord geografico e la direzione del nord magnetico;
  •  l'inclinazione magnetica, pari all'angolo che un ago magnetico libero di ruotare sul piano verticale forma con la superficie terrestre;
  • L'intensità del campo misurata in gauss o in Tesla (in effetti ciò che viene misurato non è l’intensità H, ma l’induzione B. L'intensità del campo si misura infatti in oersted o in A m-1)).

Gli studi finora compiuti hanno dimostrato delle variazioni secolari di tutti e tre questi parametri. Ad esempio l'intensità media del campo, che attualmente è di circa 0,5 gauss, sembra diminuire regolarmente del 5% circa al secolo. Oggi non esiste ancora una teoria organica in grado di spiegare in modo completo l'origine e la natura del campo magnetico terrestre. Scartata, per i motivi già visti, l'ipotesi dell'esistenza di una barra magnetica all'interno della terra, i geofisici ritengono che vi siano buone probabilità di costruire una teoria soddisfacente a partire dall'ipotesi della dinamo ad autoeccitazione.
Il principio di funzionamento di una dinamo è basato sul fatto che se un conduttore di corrente viene mosso in un campo magnetico, si produrrà in esso una corrente elettrica per induzione. Ora, se supponiamo che la terra contenga al suo interno del materiale conduttore in movimento (e ciò è perfettamente compatibile con l'esistenza di un nucleo metallico allo stato fuso) e che originariamente si sia trovata immersa in un campo magnetico esterno, ad esempio quello solare, è allora possibile che al suo interno si sia generata una corrente elettrica indotta. Ma una corrente che si muove in un conduttore produce a sua volta un campo magnetico. In tal modo si può pensare che la corrente indotta nel nucleo terrestre in movimento da un campo magnetico esterno abbia poi prodotto il campo magnetico terrestre. A sua volta il campo magnetico terrestre può continuare ad alimentare la corrente indotta all'interno del materiale conduttore che si trova nel nucleo, se questo si mantiene in movimento, finendo in tal modo per mantenere costantemente attivo il campo magnetico stesso.
E' abbastanza semplice immaginare che i movimenti nel materiale del nucleo, necessari per autoalimentare la dinamo interna alla terra, si producano grazie a movimenti convettivi nel nucleo esterno fuso. Più difficile è spiegare come il campo magnetico dipolare abbia potuto nel passato invertire bruscamente la sua polarità.
Molte informazioni sul comportamento del campo magnetico terrestre in epoche geologiche ci provengono dalla scoperta del magnetismo fossile o paleomagnetismo.

5) Paleomagnetismo
Viene definito paleomagnetismo il fenomeno per il quale alcune rocce sono in grado di registrare al loro interno la direzione che aveva il campo magnetico al momento della loro formazione. Ciò dipende dalla presenza in tali rocce di minerali magnetizzabili, come ad esempio la magnetite.
Il fenomeno riveste particolare importanza per le rocce ignee. Quando infatti la temperatura di un magma scende al di sotto del punto di Curie, i minerali magnetizzabili si orientano secondo la direzione delle linee di forza del campo magnetico esistente in quel momento (magnetizzazione termorimanente). E' possibile anche un'altra forma di magnetizzazione residua, che riguarda le rocce clastiche quando al loro interno si depositano particelle di minerali magnetizzati  (magnetizzazione detritica rimanente). Lo studio dei dati paleomagnetici effettuati su rocce di tutto il mondo ha permesso di ottenere fondamentali risultati per quel che riguarda il comportamento del campo magnetico nel passato, evidenziando fenomeni di migrazione dei poli e addirittura repentine inversioni del campo magnetico stesso.
I dati sperimentali più spettacolari che dimostrano in modo inequivocabile le ripetute inversioni del campo magnetico terrestre sono stati ottenuti ai lati delle dorsali medio oceaniche. Infatti man mano che le lave basaltiche vengono eruttate dalle dorsali si magnetizzano secondo la direzione del campo magnetico. I geofisici hanno così scoperto che ai lati delle dorsali esistono fasce simmetriche, disposte parallelamente a destra e a sinistra della dorsale, a polarità alterna.
Tali inversioni avvengono all'incirca ogni 500.000 - 600.000 anni, senza che per ora si riesca a trovare una spiegazione soddisfacente del fenomeno.
La scoperta dell'esistenza di bande magnetizzate in senso opposto ai lati delle dorsali ebbe  comunque importanti ripercussioni, in quanto costituiva una prova importante a favore della teoria di Hess (1962) dell'espansione dei fondali oceanici. E, come avremo modo di vedere, tale teoria è uno dei pilastri sui quali poggia la moderna teoria globale della tettonica a zolle.

I dati paleomagnetici portarono importanti conferme anche alla teoria della deriva dei continenti, una teoria geodinamica che ha in qualche modo aperto la strada alle ipotesi della tettonica a zolle. Le indagini paleomagnetiche eseguite su rocce coeve (aventi la stessa età) di continenti diversi, hanno infatti evidenziato l'esistenza di registrazioni del paleonord magnetico discordanti, come se per ciascun continente a quel tempo esistesse un nord diverso. Il dato era chiaramente assurdo e l'unico modo per venirne a capo era di ammettere che i continenti nel frattempo si erano mossi rispetto alla posizione che avevano al momento in cui le rocce avevano registrato la direzione del campo magnetico. Analisi di questo tipo hanno addirittura permesso di ricostruire molti dei movimenti compiuti dai continenti, confermando sostanzialmente la teoria della loro deriva.


 

Geodinamica

 L’attualismo

La geodinamica si occupa di tutti i fenomeni geologici connessi alle grandi trasformazioni della crosta terrestre. Oggi appare scontato che la crosta terrestre non sia sempre stata quale ora la vediamo, ma la nascita dell'idea di un'evoluzione geologica è relativamente recente. Le teorie scientifiche più accreditate fino a tutto il '700 erano il fissismo ed il catastrofismo. che disegnavano un mondo statico, in cui gli unici mutamenti possibili avvenivano attraverso repentine catastrofi.
Il primo germe di un'idea evolutiva in geologia si trova in "Principles of Geology" (1830 - 1833), dove Charles Lyell enuncia il principio dell'attualismo, secondo il quale le cause che hanno modificato la crosta terrestre durante la sua storia sono le stesse che operano attualmente. Gli effetti grandiosi che noi osserviamo non sarebbero dunque  dovuti a catastrofi, ma al fatto che tali processi, pur agendo in modo talmente lento da non essere percepibili in tempi brevi, hanno avuto a disposizione tempi lunghissimi per prodursi. La teoria di Lyell afferma implicitamente che i tempi geologici dovevano essere enormemente più lunghi di quanto allora si potesse immaginare e che la terra aveva subito una lenta evoluzione geologica che continuava impercettibilmente ad agire. Nonostante le forti critiche subite, il principio dell'attualismo divenne un punto fermo della scienza geologica ed ebbe tra l'altro notevole influenza sulle teorie evolutive darwiniste. E' così che dalla seconda metà dell'ottocento in poi si susseguirono diverse teorie tese a dar ragione delle principali strutture della crosta terrestre in termini di una lenta evoluzione crostale. Inizialmente i geologi si interessarono principalmente ai processi di formazione delle catene montuose.

 

Le teorie orogenetiche: isostasia e geosinclinali

Le prime teorie orogenetiche ipotizzavano che le catene montuose si fossero formate in seguito al raffreddamento ed alla conseguente contrazione della crosta terrestre. Le catene montuose sarebbero, secondo tale ipotesi dei corrugamenti superficiali della crosta, paragonabili a quelli che percorrono la buccia di una mela messa in forno. Tale teoria venne presto scartata poiché non permetteva di giustificare il fatto che le catene montuose non si trovavano in realtà distribuite uniformemente sulla crosta terrestre, come ci si sarebbe dovuto aspettare da un raffreddamento omogeneo.
Maggior successo ebbe la teoria dell'isostasia, proposta da Airy nel 1855. Secondo tale teoria le catene montuose potrebbero sorgere grazie ad una serie di lenti movimenti verticali della crosta terrestre. La teoria prevede che la crosta, più rigida e leggera, 'galleggi' sul sottostante mantello plastico, più pesante.  Tale modello viene, nelle sue linee fondamentali, accettato ancor oggi, anche se non per spiegare i processi orogenetici. Esso permette di dar ragione di numerosi movimenti verticali della crosta, innalzamenti o sprofondamenti, misurati a carico di estese regioni.
Il modello attuale dell'isostasia prevede che la litosfera continentale sialica possa essere descritta tramite una serie di blocchi rigidi giustapposti che galleggiano sulla sottostante astenosfera, più pesante e plastica. Più alto è il blocco sopra la superficie (rilievo), maggiore è la parte di esso che sprofonda nell'astenosfera, in modo analogo a quanto avviene per un iceberg che galleggia nell'acqua.
L'equilibrio isostatico di tali blocchi può essere modificato in vari modi ed i blocchi reagiscono muovendosi verticalmente per ristabilire l'equilibrio.
Così i paesi bassi e la penisola scandinava sono sprofondati durante le glaciazioni per il peso dei ghiacci, mentre ora si stanno lentamente risollevando, alla velocità di 2 cm l'anno, per ristabilire l'equilibrio isostatico, in modo del tutto simile a quanto avviene quando una nave si libera del suo carico ed una porzione maggiore di essa emerge dall'acqua. Si calcola che la penisola scandinava debba alzarsi di altri 200 m prima di raggiungere nuovamente l'equilibrio isostatico.
In modo analogo si ritiene che il materiale progressivamente eroso dai rilievi e che va sedimentando nelle zone più depresse, provochi uno sprofondamento di queste ultime (subsidenza) ed un innalzamento dei rilievi diventati più leggeri.

Gravimetria ed isostasia (Approfondimento)
La gravimetria misura il valore della accelerazione di gravità 'g' sulla superficie terrestre. I dati gravimetrici sono utilizzati ampiamente dai geofisici per studiare la distribuzione e la densità delle rocce all'interno della terra.
I geofisici riscontrano numerose differenze tra la gravità misurata e quella prevista teoricamente che interpretano come conseguenza di anomale distribuzioni delle masse rocciose al di sotto della superficie terrestre.
Se i valori misurati e corretti (riduzione all’ellissoide) risultano maggiori del valore atteso si parla di anomalie gravimetriche positive, se risultano minori si parla di anomalie gravimetriche negative.
I geofisici mettono in relazione le anomalie negative con l'esistenza in profondità di un difetto di massa, cioè di una concentrazione anomala di rocce leggere, mentre le anomalie positive sono evidentemente legate ad un eccesso di massa. Può essere ora interessante vedere come la teoria dell'isostasia nacque in seguito all'osservazione di alcune anomalie gravimetriche.Tra il 1840 ed il 1850 il geografo G. Everest dirigeva il primo rilevamento topografico dell'India. Per ottenere misure più accurate vennero utilizzati due metodi indipendenti.Uno consisteva nel normale utilizzo di strumenti topografici e di misure di triangolazione. L'altro si basava su misure astronomiche e consisteva nel determinare la distanza tra due punti in riferimento all'altezza della stessa stella sul piano dell'orizzonte. Quando tali misure venivano fatte in prossimità dell’Himalaya, i due metodi davano risultati in netto contrasto. Venne proposto che la differenza fosse dovuta all'attrazione gravitazionale dell'Himalaya sul filo a piombo, che avrebbe reso imprecise le misurazioni astronomiche. L'effetto deviante dell'Himalaya venne calcolato, ma risultò eccessivo. Il mistero venne risolto con l'introduzione dell'ipotesi dell'isostasia la quale suggeriva che l'Himalaya possedesse delle profonde radici sialiche che, affondando sul mantello sottostante, provocavano un'anomala concentrazione di rocce leggere. La deviazione del filo a piombo da parte dell'Himalaya doveva essere perciò meno intensa di quella inizialmente calcolata.

Nel 1873 Dana introduce l'ipotesi che le catene montuose si producano per sollevamento di una geosinclinale. La teoria della geosinclinale ha avuto notevole fortuna ed è sostanzialmente accettata ancor oggi, anche se viene ritenuta una teoria parziale che necessita di essere inserita in una teoria organica e completa della dinamica crostale. Essa nasce per cercare di giustificare la presenza di sedimenti marini di ambiente neritico (di acque basse) in strati di parecchie centinaia di metri di spessore, elevatisi sopra il livello del mare a formare imponenti rilievi (un esempio sono le dolomiti).
L'unica spiegazione possibile era che esistessero delle vaste depressioni dei fondali oceanici, dette appunto geosinclinali, prossime alle coste, dove si depositavano enormi quantità di sedimenti, con il contemporaneo e progressivo abbassamento del fondale marino per subsidenza da carico. Il modello aveva però qualche difficoltà a spiegare in che modo tali sedimenti, dopo essersi formati, potessero essere corrugati fino a diventare grandi rilievi.

 

Wegener e la deriva dei continenti

Tra il 1910 ed il 1929 prende corpo una teoria geodinamica rivoluzionaria, che ebbe un fortissimo impatto sull'opinione pubblica dell'epoca, la teoria della deriva dei continenti. Sulla base di una serie di evidenze di cui parleremo in seguito, il geofisico tedesco Alfred Wegener propose che circa 200 milioni di anni fa tutte le terre emerse fossero state unite in un unico enorme supercontinente, detto Pangea, circondato dall'unico oceano allora esistente, detto Panthàlassa. Circa 180 milioni di anni fa la Pangea avrebbe iniziato a fratturarsi in blocchi leggeri di SIAL, galleggianti sul sottostante SIMA.
La prima frattura, prodottasi in senso E - W, avrebbe aperto la Pangea in un continente settentrionale detto Laurasia ( da Laurenziano e Asia - Laurenziano è detto lo scudo Canadese che si trova nella regione di S. Lorenzo), comprendente l'attuale America del Nord e l'Eurasia ed uno meridionale, detto Gondwana (dal nome di un'antica regione dell'India), comprendente l'America del sud, l'India, l'Australia e l'Antartide. I due continenti si sarebbero separati per l'aprirsi di un braccio di mare chiamato Tètide (da Thetis, dea greca del mare). Successivamente, con l'apertura dell'oceano Atlantico i continenti avrebbero lentamente raggiunto le posizioni attuali. Wegener spiegava  la deriva  con l'effetto centrifugo prodotto dalla rotazione terrestre, idea attualmente abbandonata.
Wegener riteneva inoltre possibile spiegare la formazione delle catene montuose con l'effetto prodotto dall'attrito del bordo continentale contro il mantello simatico. La teoria di Wegener venne accolta con grande scetticismo dal mondo accademico ed in molti casi apertamente derisa, soprattutto per la difficoltà nel trovare un meccanismo in grado di giustificare in modo soddisfacente il movimento dei continenti. Al giorno d'oggi la deriva appare un fatto accertato e la teoria di Wegener ha trovato posto all'interno di una teoria geodinamica complessiva, la teoria della tettonica a zolle.
Vi sono diverse evidenze a favore della deriva, esposte a suo tempo dallo stesso Wegener:

3.1 -  prove morfologiche
Le coste occidentali africane combaciano con buona approssimazione con le coste orientali americane. In realtà le coste sono state  continuamente modificate dal gioco congiunto dell'erosione marina e della sedimentazione fluviale. Una corrispondenza assai migliore della linea di costa si ottiene disegnando i confini dei continenti a qualche centinaio di metri sotto il livello del mare, dove finisce la piattaforma continentale ed inizia la scarpata oceanica (i continenti continuano infatti con lieve pendenza al di sotto del livello del mare per un tratto più o meno esteso al di là della linea di costa, formando un bordo sottomarino detto piattaforma continentale, poi improvvisamente si produce una brusca variazione di pendenza, detta scarpata oceanica, che  sprofonda fino a collegarsi con le pianure abissali a 4000 - 5000 m di profondità). Bullard, agli inizi degli anni '60, dimostrò che la corrispondenza tra i  continenti risultava migliore a livello dei loro margini sommersi.

 

3.2 - Prove paleontologiche
Alcuni fossili di organismi viventi assolutamente non in grado di attraversare un oceano, sono stati rinvenuti in sud Africa ed in Sud America. Un esempio particolarmente interessante è dato dall'area di diffusione del rettile 'mesosaurus'.

 

3.3 - Prove geologiche
Se costruiamo un puzzle non è sufficiente che i pezzi si incastrino, è necessario che appaia anche un disegno con senso compiuto. Nel caso della deriva dei continenti il 'disegno' che deve apparire è rappresentato dai tipi di rocce e dalle fasce montuose osservabili in corrispondenza delle zone costiere dei diversi continenti. Effettivamente sono stati rinvenuti strati sedimentari e catene montuose che terminano lungo una costa e ricompaiono con caratteristiche analoghe sull'altra costa al di là dell'oceano Atlantico.. Ad esempio gli Appalachi degli Stati Uniti orientali continuano con caratteristiche simili in Groenlandia e nell'Europa settentrionale.

3.4 - Prove paleoclimatiche
Antichi conglomerati di origine morenica  (tilliti) indicano che tra 200 e 300 milioni di anni fa coltri di ghiacci coprivano la parte meridionale dell'America del Sud, dell'Africa, dell'India e dell'Australia, regioni queste ultime che attualmente si trovano in zone tropicali. Wegener suggerì correttamente che riaccostando tali regioni e spostandole verso sud si poteva ottenere un'unica grande calotta glaciale in corrispondenza degli attuali sedimenti glaciali. In modo analogo, molte regioni che attualmente si trovano  a latitudini piuttosto elevate si sarebbero trovate un tempo più a sud, vicine ai tropici, in condizioni adatte alla formazione dei grandi giacimenti di carbone che oggi vi si trovano.

Nonostante il gran numero di prove portate a favore della deriva l'ipotesi di Wegener venne rifiutata dalla gran parte del mondo accademico, soprattutto perché non era allora disponibile alcun serio meccanismo in grado di spiegare il movimento dei continenti.

Indizi per una teoria geodinamica globale

Tra gli anni '30 e '40 alcuni autori (Daly, 1933 - Perekis, 1935 - Grigg, 1939) iniziarono ad intravedere la possibilità che alla base della dinamica crostale vi fossero enormi correnti di convezione all'interno del mantello simatico.
Negli anni successivi poi, emersero altre e maggiori prove a favore della deriva continentale.

 

Discordanze dei dati paleomagnetici

Decisive furono le misurazioni paleomagnetiche effettuate agli inizi degli anni '50 su rocce coeve di continenti diversi. Essendosi infatti formate nello stesso periodo, tali rocce avrebbero dovuto indicare lo stesso paleonord magnetico, mentre i dati paleomagnetici risultavano in aperta contraddizione, mostrando rocce di continenti diversi che indicavano ciascuna un diverso paleonord. Si trattava di un risultato palesemente assurdo e l'unico modo di risolvere l'enigma era di ipotizzare che, dopo aver registrato l'unico paleonord presente al momento della loro formazione, tali rocce avessero subito un movimento di traslazione assieme ai continenti in cui si erano formate. Muovendo i continenti in modo tale che i dati paleomagnetici di rocce coeve risultassero indicare un unico polo nord magnetico fu quindi possibile ricostruire l'antica distribuzione delle terre emerse. In modo analogo, i rilievi paleomagnetici eseguiti su rocce di età diversa permisero in seguito di ricostruire con grande accuratezza i movimenti di deriva dei continenti.

 

Coincidenza tra aree sismiche e vulcaniche

Iniziarono inoltre ad emergere altri fatti che richiedevano sempre più di essere collocati in un modello geodinamico organico, in grado di collegare fenomeni apparentemente slegati, ma di cui si intuiva l'unitarietà. Si iniziò ad esempio a notare la coincidenza tra aree sismiche e vulcaniche, la quale suggeriva un legame tra eruzioni, terremoti e margini crostali in movimento.

 

Scoperta di ipocentri profondi: il piano di Benioff

 

Nel 1955 H. Benioff  scoprì come gli ipocentri dei terremoti, normalmente situati nei primi 100 km di profondità, facessero eccezione in prossimità della costa pacifica del continente asiatico. In Particolare Benioff dimostrò che essi risultavano sempre più profondi man mano che si procedeva dal limite esterno dell'arco insulare giapponese verso  il continente asiatico fino ad una profondità massima di 700 km, disponendosi su di una ideale superficie inclinata di circa 45°, in seguito detta piano di Benioff.

 

Hess e l’espansione dei fondali oceanici

In quegli stessi anni le datazioni radiometriche misero in evidenza che le rocce ai lati della dorsale medio atlantica sono relativamente giovani, mentre la loro età cresce man mano che ci si avvicina alla costa americana ed africana, fino ad una età massima di circa 200 milioni di anni. Misure di paleomagnetismo effettuate sulle rocce basaltiche effuse ai lati della dorsale medio atlantica dimostrarono infine agli inizi degli anni '60, la presenza delle fasce simmetriche a polarità magnetica alterna. Alla luce di tutti questi dati nel 1962 Hess propose la sua teoria dell'espansione dei fondali oceanici, secondo la quale il magma basaltico proveniente dal mantello,  in risalita a livello della dorsale medio atlantica, solidificandosi, formava nuova crosta oceanica e spingeva quella vecchia verso il bordo dei continenti. Il fatto poi che non esistesse crosta oceanica di età superiore ai 200 milioni di anni portava ad ipotizzare l'esistenza di un qualche meccanismo in grado di riassorbire la crosta oceanica più vecchia a livello del margine continentale.
Finalmente nel 1967 venne elaborata una teoria geodinamica complessiva in grado di riunire in uno schema unico e coerente tutti i contributi parziali emersi negli anni precedenti. Il modello della tettonica a zolle o a placche venne abbozzato da Parker e Mc Kenzie, ma fu sviluppato ed approfondito in seguito, fino alla sua forma attuale, da un gran numero di studiosi.

 

Teoria della tettonica a zolle

Secondo tale teoria la litosfera non sarebbe formata da uno strato roccioso continuo, ma sarebbe frammentata in diversi pezzi a forma di calotta sferica, dette placche o zolle, 6 maggiori e diverse minori. Le zolle combaciano tra loro incastrandosi come in un mosaico, ma si muovono le une rispetto alle altre, trascinate dai movimenti di convezione presenti nella sottostante astenosfera, sulla quale praticamente galleggiano. Ciascuna zolla può essere costituita di sola litosfera di tipo oceanico, di sola litosfera di tipo continentale o di porzioni di diversa grandezza di litosfera dei due tipi.  In altre parole i margini delle zolle possono correre attraverso i continenti, attraverso gli oceani o, come avviene nella maggior parte dei casi, al confine tra oceani e continenti. Nel loro movimento reciproco le zolle possono presentare un moto di allontanamento, di avvicinamento o di scorrimento laterale. Le principali interazioni tra le zolle avvengono quindi lungo i loro margini ed è dunque lungo di essi che si verifica la maggior parte dell'attività sismica, vulcanica ed orogenetica del nostro pianeta. In relazione al movimento reciproco delle zolle i margini si classificano in:

  • Margini divergenti o costruttivi, in corrispondenza dei quali due placche si allontanano lasciando spazio alla risalita di magma dal mantello a formare nuova crosta;
  • Margini convergenti o distruttivi, in corrispondenza dei quali due zolle si avvicinano provocando la distruzione di crosta;
  • Margini trasformi o conservativi, in corrispondenza dei quali due zolle scivolano lateralmente l'una rispetto all'altra.

I margini divergenti

Sono sede di moti convettivi di risalita a livello dell'astenosfera. Il materiale caldo scontrandosi con la litosfera diverge sottoponendola ad enormi trazioni che finiscono per spaccarla e allontanarne i lembi. Sono margini divergenti le dorsali oceaniche e le fosse tettoniche.

Le dorsali oceaniche

costituiscono delle catene di rilievi larghe fino a 1500 km, alte fino a 2000 m, con una lunghezza totale di circa 70.000 km. Costituiscono un sistema continuo che  attraversa tutti gli oceani. Nell'oceano Atlantico e nell'oceano Indiano la dorsale è percorsa longitudinalmente da una frattura profonda (Rift Valley). Da tale frattura sono effuse ogni anno quantità enormi di lave basaltiche provenienti dal mantello. Il sistema delle dorsali non si sviluppa secondo una linea continua, ma attraverso una spezzata, nella quale tratti rettilinei di dorsale sono interrotti e spostati da fratture ortogonali (faglie trasformi). Probabilmente le faglie, che risultano più accentuate alle basse latitudini, sono prodotte dalle tensioni differenziali che sulla litosfera esercita la diversa forza centrifuga esistente alle diverse latitudini. In alcuni casi le dorsali affiorano in isole vulcaniche, come accade per l'Islanda, le Azzorre, S. Elena, e Tristan da Cunha.
Si calcola che la dorsale medio atlantica (di gran lunga la più studiata) produca nuova crosta oceanica, sostenendo in tal modo l'espansione dei fondali, alla velocità media di circa 5 cm l'anno. Gli edifici vulcanici che si formano lungo la dorsale contribuiscono certamente ad innalzarla al di sopra del livello dei fondali oceanici, ma si ritiene che la causa principale della sua posizione elevata vada attribuita al magma in risalita. Trattandosi di un materiale molto caldo e quindi meno denso delle rocce circostanti, la dorsale tende a "gonfiarsi" e a galleggiare sul sottostante mantello. Man mano che ci si allontana dall'asse della dorsale, la litosfera oceanica di recente formazione si raffredda e si contrae, attraverso un processo detto di subsidenza termica. Sono necessari circa 100 milioni di anni affinché i processi di raffreddamento e contrazione si completino. Al termine di questo periodo, rocce che facevano inizialmente parte di un grande sistema montuoso sottomarino, vanno a costituire i fondali oceanici.

 

                 

 

Tale fenomeno di contrazione crostale viene invocato anche per spiegare l'esistenza sui fondali oceanici dei guyot, monti sottomarini dalla cima piatta, spesso incrostati alla loro sommità di coralli. La presenza dei coralli, che non vivono a profondità inferiori ai 50 m, porta necessariamente a concludere che i guyot devono essersi trovati in passato molto più vicini alla superficie oceanica di quanto non siano ora. Si ritiene infatti che i guyot siano i resti di vulcani originatisi in prossimità delle dorsali, emersi dal mare come isole vulcaniche ed in seguito erosi ed appiattiti dall'azione del moto ondose. Infine con l'espansione e la contrazione del fondale oceanico sono costretti a sprofondare.
Se lo sprofondamento del guyot è sufficientemente lento, i coralli che vivono lungo i bordi dell'isola vulcanica hanno il tempo di crescere verso l'alto formando un anello circolare. Si ritiene che tale sia il meccanismo di formazione degli atolli corallini.

          

 

L'espandimento dei fondali oceanici legato ai margini divergenti è in grado di spiegare anche altre strane strutture osservabili sui fondali oceanici, come gli allineamenti dei vulcani sommersi.
Si è scoperto ad esempio che l'allineamento delle isole Hawaii prosegue verso nord con una serie di vulcani sommersi fino alle isole Midway e poi ancora fino alle Aleutine. La datazione radiometrica ha inoltre messo in evidenza che l'isola più meridionale dell'arcipelago delle Hawaii è la più giovane, mentre man mano che ci si sposta verso nord l'età delle isole  e dei successivi vulcani sottomarini aumenta progressivamente. I geofisici ritengono che si tratti di uno dei rarissimi casi di vulcanesimo prodottosi al di fuori dei margini crostali ed indicato con il termine di hot spot o punto caldo.  Secondo tale ipotesi i punti caldi sarebbero sostenuti da correnti convettive ascendenti, concentrate in un flusso cilindrico detto plume o pennacchio. L'allineamento degli edifici vulcanici sottomarini e la loro età in progressione potrebbe dunque spiegarsi supponendo che la placca pacifica si stia muovendo sopra un punto caldo relativamente stazionario. L'età di ogni edificio vulcanico indicherebbe perciò il momento in cui esso si trovava sopra il punto caldo. Dati recenti indicano che al largo della costa meridionale dell'ultima isola dell'arcipelago delle Hawaii si stia formando un nuovo edificio vulcanico. Tra non molto tempo, geologicamente parlando, un'altra isola si aggiungerà dunque all'arcipelago.

Le fosse tettoniche

Non tutti i margini divergenti sono antichi come la dorsale medio atlantica e non tutti si trovano in mezzo all'oceano. Si ritiene ad esempio che il Mar Rosso sia una zona di recente apertura di un margine divergente. L'Arabia si sta infatti muovendo verso nord-est, separandosi dall'Africa. Il Mar Rosso ci mostra in qualche modo come doveva essere l'oceano Atlantico circa 200 milioni di anni fa.
Quando una corrente convettiva divergente si forma sotto una zolla continentale questa, sottoposta ad un'enorme trazione, è destinata a fratturarsi producendo tipici sistemi di faglie a gradinata, con formazione di una fossa tettonica. Anche al centro di una fossa tettonica si trova una caratteristica depressione che la percorre longitudinalmente, detta rift valley.

                  

Esempi di fosse tettoniche sono in Europa la valle del Reno, in Africa il grande sistema che parte dalla valle del Giordano in Libano e proseguendo lungo il Mar Morto ed il Mar Rosso arriva fino alla regione di grandi laghi dell'Africa orientale, per una lunghezza complessiva di circa 5000 km.
Se il flusso convettivo astenosferico permarrà l'Africa sarà destinata ad aprirsi. La rift valley diventerà uno stretto braccio di mare, come l'attuale Mar Rosso, per trasformarsi in milioni di anni in un oceano come quello atlantico.

 

margini convergenti

Poichè lungo i margini divergenti si forma nuova litosfera e la superficie della terra rimane costante, altra litosfera deve necessariamente venir distrutta da qualche altra parte. Ciò accade dove le zolle si scontrano. La collisione di due zolle produce risultati diversi a seconda del tipo di litosfera coinvolta nel processo. In tal modo si possono distinguere sostanzialmente tre tipi di margini convergenti.

Convergenza litosfera oceanica - litosfera continentale

La litosfera oceanica più densa e sottile si infila sotto la litosfera continentale più spessa e leggera con un movimento detto di subduzione. Penetrando nell'astenosfera la placca che sprofonda comincia a riscaldarsi, in parte per l'enorme attrito prodotto ed in parte per il gradiente geotermico. In tal modo la litosfera oceanica perde gradualmente rigidità fino ad essere completamente riassorbita dall'astenosfera ad una profondità di circa 700 km. Il piano di subduzione della litosfera oceanica che sprofonda è stato individuato attraverso la rilevazione degli ipocentri dei sismi associati allo sprofondamento della placca e corrisponde al già citato piano di Benioff.  Nel punto in cui la crosta oceanica si incurva verso il basso si origina uno sprofondamento del fondale marino che si manifesta come una stretta e lunga fossa oceanica. Le fosse oceaniche sono le zone più profonde degli oceani, con una larghezza variabile tra i 100 e i 200 km, una lunghezza di migliaia di chilometri ed una profondità di 10 - 13 km. Esse corrono in genere parallelamente alla costa continentale che circonda l'oceano Pacifico (fossa delle Marianne, fossa delle Aleutine etc.). Penetrando nell'astenosfera la placca oceanica comincia a fondere. Il magma che si forma è meno denso e meno basico del mantello circostante, a causa del processo di fusione parziale e dell'infiltrazione di acqua. Per questo motivo esso inizia a risalire lentamente verso la superficie. La maggior parte di esso resta imprigionato all'interno della crosta continentale, dove si raffredda e forma rocce intrusive. In parte però arriva alla superficie producendo eruzioni vulcaniche sostenute da magma di tipo andesitico. Si ritiene ad esempio che la catena delle Ande si sia formata proprio in questo modo. Catene montuose di questo tipo, associabili all'attività vulcanica legata alla subduzione della litosfera oceanica sono dette archi magmatici.

           

L'intera struttura è conosciuta come sistema arco - fossa. Altri esempi di archi magmatici sono la Catena delle Cascate e la Sierra Nevada negli Stati Uniti occidentali. L'erosione continentale intanto accumula enormi quantità di sedimenti soprattutto a livello della fossa, che si comporta quindi come una geosinclinale. In seguito l'avvicinamento delle due zolle comprime e solleva i sedimenti fino a formare delle catene montuose che si fondono con gli archi magmatici, in un processo di orogenesi. Le rocce sedimentarie più profonde subiscono intensi processi metamorfici e spesso contengono caratteristici brandelli strappati alla crosta oceanica in subduzione, noti come ofioliti.

 

Convergenza litosfera oceanica - litosfera oceanica

Quando le due zolle che convergono sono entrambe di litosfera oceanica, una delle sue entra in subduzione. Anche in questo caso si forma un tipico sistema arco - fossa. Ma l'arco magmatico invece di impostarsi in corrispondenza del bordo continentale come nel caso precedente, sorge dal fondale oceanico, formando caratteristiche ghirlande di isole vulcaniche, in genere a poca distanza dalla costa. Tipici esempi sono gli arcipelaghi delle Aleutine in Alaska, le Kurili a nord-est del Giappone, l'arcipelago giapponese, le isole della Tonga,  le Filippine, il gruppo Sumatra - Giava e, fuori dal Pacifico, le grandi Antille.
Tra l'arco magmatico e la costa si forma un breve braccio di mare, poco profondo, detto bacino marginale o di retroarco.  Col passare del tempo, mentre l'arco cresce in altezza per l'attività vulcanica, il processo di erosione accumula sui due lati (bacino marginale e fossa) notevoli quantità di sedimenti. I sedimenti  sono destinati ad essere compressi, deformati  e metamorfosati dall'enorme compressione prodotta dalle due placche in avvicinamento. Se lo scontro tra le zolle prosegue l'arco insulare è destinato ad addossarsi al continente formando una catena costiera.
Con modalità diverse ma simili, questi primi due tipi di convergenza litosferica finiscono per essere responsabili di fenomeni orogenetici ai margini dei continenti. I geologi ritengono oggi che i continenti si siano progressivamente accresciuti ai loro bordi mediante successive deposizioni orogenetiche, in seguito erose.
In tal modo i continenti sono oggi formatasi da porzioni di litosfera ormai completamente saldate tra loro e spianate dall'erosione, chiamate cratoni, bordati dalle fasce orogenetiche o orògeni, associati ai sistemi arco - fossa. I cratoni sono regioni stabili , pressoché prive di attività sismica e vulcanica. A loro volta si suddividono in scudi e tavolati.

Gli scudi sono costituiti da vaste aree leggermente convesse formati da rocce intrusive e metamorfiche molto antiche di cui non si è più in grado di ricostruire la storia. Intorno agli scudi si depositano tavolati di rocce sedimentarie, al di sotto dei quali si ritrovano comunque le antiche rocce degli scudi.
Gli scudi principali sono quello canadese, lo scudo siberiano, brasiliano, australiano, centro africano.

Convergenza litosfera continentale - litosfera continentale

Se il processo di avvicinamento prosegue entrambi i due tipi di convergenza finora esposti sono destinati a consumare tutta la  litosfera oceanica, con relativa chiusura di un bacino marino e successivo scontro di due porzioni di litosfera continentale. In tal caso le due zolle continentali, avendo la stessa densità non entrano in subduzione, ma collidono provocando un raccorciamento crostale ed un corrugamento. Si formano in tal modo le catene montuose interne. Si ritiene che una collisione di questo tipo tra l'India e l'Asia abbia originato la catena Himalayana. Collisioni analoghe hanno prodotto altri sistemi montuosi come le Alpi, gli Appalachi negli Stati Uniti orientali e gli Urali in Russia. Localmente lo scontro di due zolle continentali può portare a fenomeni di raddoppio crostale, con una zolla che si incastra sotto l'altra senza peraltro riuscire ad immergersi nel mantello, come sembra essere avvenuto per l'altopiano Himalayano.

                

 

margini trasformi

Quando le placche scivolano lateralmente l'una rispetto all'altra si producono margini trasformi o conservativi. La maggior parte dei margini trasformi interessa la litosfera oceanica, ma alcune, come la faglia si San Andreas in California, si trovano all'interno di continenti.
Lungo la faglia di San Andreas la placca pacifica, alla quale appartiene la penisola della California, si sta spostando verso nord-ovest rispetto alla placca nord americana che si sposta verso sud-est. Se il movimento continuerà, tra milioni di anni la California sarà un'isola al largo del Pacifico e potrà forse, alla fine, raggiungere l'Alaska o la Russia.

 

Fonte: http://rodomontano.altervista.org/downloads/Scienze%20Terra.zip

sito web: http://rodomontano.altervista.org/

Autore del testo: non indicato nel documento di origine

 

Scienze della terra

 

 

Visita la nostra pagina principale

 

Scienze della terra

 

Termini d' uso e privacy

 

 

 

 

Scienze della terra