La probabilità quantistica
La probabilità quantistica
Questo sito utilizza cookie, anche di terze parti. Se vuoi saperne di più leggi la nostra Cookie Policy. Scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all’uso dei cookie.I testi seguenti sono di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente a studenti , docenti e agli utenti del web i loro testi per sole finalità illustrative didattiche e scientifiche.
La probabilità quantistica
Al di là della naturale difficoltà ad accettare un mondo così poco familiare ed intuitivo come quello dei quanti, il comportamento delle particelle quantistiche presenta ulteriori stranezze.
Una di queste deriva dal fatto che la probabilità quantistica presenta un comportamento diverso rispetto alla probabilità ordinaria.
Infatti mentre in fisica classica le distribuzioni di probabilità di eventi indipendenti sono additive, in meccanica quantistica questo non avviene.
Se ad esempio vogliamo calcolare la probabilità che lanciando due dadi esca il numero 3, dobbiamo sommare tra loro la probabilità dei due eventi indipendenti E1 (esce 2 sul primo dado, esce 1 sul secondo: P1 = 2 (esce 1 sul primo dado, esce 2 sul secondo:
P2 =
).
Ptot = P1 + P2
Se osserviamo ora due onde d'acqua sul mare che si accavallano possiamo notare che l'altezza complessiva dell'onda che si forma è data dalla somma delle altezze (ampiezze) delle singole onde. Se ad esempio in un certo punto dello spazio un'onda è al massimo ed una al minimo le due onde si annullano. Si tratta del principio di sovrapposizione che governa, come abbiamo già visto, tutti i fenomeni ondulatori, producendo i tipici processi di interferenza.
Anche le onde di probabilità della teoria quantistica, come le onde ordinarie, obbediscono al principio di sovrapposizione. Se cioè in una regione ci sono due onde di probabilità l'ampiezza totale risulta uguale alla somma delle ampiezze.
Ma la probabilità di trovare una particella in un certo punto non è data dall'altezza, che può essere anche negativa, ma dal quadrato della sua ampiezza (Y2).
Dunque, poichè le ampiezze si sommano in base al principio di sovrapposizione e poichè invece la probabilità è data dal quadrato dell'ampiezza, nella teoria dei quanti la probabilità totale non può essere calcolata sommando le probabilità parziali di eventi indipendenti.
Per esemplificare tale comportamento costruiamo il seguente esperimento mentale.
Immaginiamo di lanciare dei proiettili verso due bersagli attraverso due finestre che ci permettano di osservare i bersagli separatamente.
Inizialmente apriamo solo la prima finestra e colpiamo quindi solo il primo bersaglio. Scopriamo che i proiettili si distribuiscono in modo caratteristico: pochi vicino al centro del bersaglio, pochi molto lontano dal centro, mentre diventano via via più frequenti alle distanze intermedie. Tale distribuzione di frequenza viene rappresentata in modo caratteristico da una gaussiana (detta anche curva degli errori proprio perchè descrive la distribuzione degli errori ed evidenzia come gli errori molto piccoli e molto grandi sono via via meno frequenti). Se i lanci effettuati sono sufficientemente numerosi la curva di frequenza diventa una buona misura della probabilità che possiede ciascun punto del bersaglio di essere colpito.
Se effettuiamo lo stesso esperimento tenendo chiusa la prima finestra e aprendo la seconda, potremo osservare un'analoga distribuzione nei colpi.
Aprendo infine entrambe le finestre e tirando ad entrambi i bersagli contemporaneamente, scopriremo che nei punti in cui le due curve di probabilità si sovrappongono, i proiettili arrivano con maggior frequenza. Si può facilmente verificare che ora la probabilità che ciascun punto dello schermo venga colpito è esattamente la somma delle due curve di probabilità singole.
Per i proiettili vale dunque
Ptot = P1 + P2
Eseguiamo ora l'esperimento facendo passare degli elettroni attraverso due fenditure sottili disposte parallelamente.
Quando è aperta solo la prima fessura gli elettroni producono sullo schermo una tipica figura di diffrazione che ritroviamo analoga nel caso venga aperta solo la seconda fenditura. Gli elettroni colpiscono lo schermo più nunmerosi in una zona centrale per poi diradarsi alle estremità.
Ma nel caso le due fenditure vengano aperte contemporaneamente la curva di distribuzione totale degli elettroni non è data dalla somma delle due curve parziali. Sorprendentemente in alcuni punti in cui prima gli elettroni cadevano quando erano costretti a passare solo per una delle due fenditure, separatamente aperte, ora gli elettroni non cadono più. La curva che si ottiene è ancora una distribuzione di frequenza e quindi una misura della probabilità che gli elettroni hanno di colpire lo schermo, ma in tal caso essa non può essere ottenuta come semplice somma delle probabilità degli eventi separati ed indipendenti.
È necessario tener presente che gli elettroni arrivano sullo schermo rivelatore in modo discontinuo, venendo cioè captati attraverso singoli impulsi, come vere e proprie particelle. Nonostante ciò la loro distribuzione sullo schermo rivela il loro comportamento ondulatorio. In particolare la distribuzione di frequenza ottenuta con entrambe le fenditure aperte rivela chiaramente la presenza di fenomeni di interferenza.
In effetti, secondo la teoria quantistica, non sono gli elettroni a comportarsi come onde, infatti colpiscono lo schermo come proiettili, ma è la probabilità di trovare l'elettrone che presenta un comportamento ondulatorio e viene diffratta dalle fenditure subendo quindi interferenza.
In tal caso la probabilità associata al passaggio dell'elettrone attraverso la fenditura 1 è pari a
P1 = (Y1)2
e la probabilità associata al passaggio dell'elettrone attraverso la fenditura 2 è pari a
P2 = (Y2)2
Quando entrambe le fenditure sono aperte le due onde Y1 e Y2 interferiscono, producendo una funzione d'onda che chiameremo Ytot
La probabilità totale sarà quindi pari al quadrato dell'onda prodotta dall'interferenza
Ptot = (Ytot)2
Si dimostra quindi facilmente che nel caso degli elettroni, dove il comportamento ondulatorio non può essere trascurato, la probabilità che essi colpiscano lo schermo con due fenditure aperte non può essere ottenuta come semplice somma delle probabilità che essi colpiscano lo schermo con le fenditure alternativamente aperte. Il quadrato di una somma è infatti diverso dalla somma dei quadrati
(Ytot)2 = (Y1 + Y2)2 ≠ Y12 + Y22
Tale risultato è tanto più sorprendente se si pensa che esso viene ottenuto anche facendo in modo che la sorgente di elettroni emetta un elettrone per volta.
Anche se si fanno passare, attraverso le due fenditure aperte, singoli elettroni a grandi intervalli di tempo l'uno dall'altro, essi andranno a cadere solo in corrispondenza dei massimi d'interferenza.
In altre parole il singolo elettrone "non sa" dove sono caduti gli elettroni precedenti e si avvia a colpire lo schermo sulla base della probabilità totale (Ytot)2. La situazione è analoga a quella del gioco dei dadi: se nei primi 5 tiri abbiamo ottenuto sempre il numero 3, la probabilità che al sesto tiro esca ancora 3 è sempre la stessa (1/18). Essa non varia come non varia la probabilità di tutte le altre combinazioni numeriche. Potremmo verificare che il 3 esce 1 volta su 18 tiri solo lanciando molte volte i dadi.
Il fatto che anche un singolo elettrone, il quale chiaramente interagisce con lo schermo come una particella (il cui urto è osservabile come un minuscolo lampo luminoso), si comporti in realtà durante il tragitto come un'onda, la quale, per poter interferire deve passare contemporaneamente attraverso entrambe le fenditure aperte, ci induce a chiederci se l'elettrone in quanto particella passi effettivamente o per la fenditura 1 o per la fenditura 2, quando entrambe le fenditure sono aperte.
È possibile tentare di rispondere a questa domanda cercando di osservare il passaggio dei singoli elettroni attraverso le fenditure. È possibile allora collocare dei rivelatori alle fenditure che ci informino del passaggio del singolo elettrone. Saremo così in grado di sapere da quale fenditura è passato l'elettrone.
Ma nel momento in cui verifichiamo il passaggio dell'elettrone-particella attraverso una delle due fenditure, l'elettrone cessa di comportarsi come un'onda ed inizia a colpire anche le zone dello schermo che prima non colpiva: le frange di interferenza scompaiono.
Una volta che abbiamo deciso di verificare che l'elettrone è una particella che passa effettivamente attraverso una delle due fenditure come un proiettile, esso si comporta effettivamente come una particella che attraversa la fenditura.
Prescindendo dunque da un effettivo atto di osservazione non ha dunque senso parlare di esistenza oggettiva della particella in un dato punto dello spazio, ad esempio in corrispondenza di una delle due fenditure. È ciò che viene chiamata la realtà creata dall'osservatore.
Nel momento in cui lo osserviamo l'elettrone è una particella. Ma appena cessiamo di osservarlo si comporta come un'onda. Le diverse condizioni sperimentali alterano quindi in modo sensibile i risultati che noi possiamo ottenere.
La teoria quantistica afferma dunque l'impossibilità teorica di fare affermazioni relative alla natura oggettiva degli enti fisici studiati. Essa è una teoria che descrive il comportamento degli enti fisici date particolari condizioni sperimentali e non la loro essenza.
Anche se l'approccio quantistico può sembrare fortemente limitativo della nostra possibilità di conoscere il mondo, esso è in realtà comune a tutta la scienza.
Tutta la scienza si limita a descrivere il comportamento degli enti fisici e non formula affermazioni sulla loro essenza.
Quando ad esempio affermiamo che un filamento di oro è giallo, in realtà ciò non costituisce un'affermazione sull'essenza di questo elemento, ma descrive un suo comportamento in una particolare condizione sperimentale: quella di essere illuminato da luce bianca (o comunque radiazione contenente luce gialla). Se ad esempio esaminiamo il filamento con luce rossa esso appare nero, poichè assorbe tutta la radiazione che lo colpisce. Se poi il filamento viene reso incandescente esso appare rosso.
Se quello delle fenditure è un esperimento mentale, vi sono tuttavia numerosi dispositivi pratici di cui la tecnologia si serve comunemente e che sfruttano le singolari caratteristiche delle onde di probabilità.
Fonte: http://digidownload.libero.it/quintaachimica/CHIMICA.doc
Autore del testo: non indicato nel documento di origine
Parola chiave google : La probabilità quantistica tipo file : doc
La probabilità quantistica
Se vuoi trovare velocemente le pagine inerenti un determinato argomento come La probabilità quantistica utilizza il seguente motore di ricerca :
Visita la nostra pagina principale
La probabilità quantistica
Termini d' uso e privacy